skip to main content

Characteristics of all organic redox flow battery (AORFB) active species TEMPO-methyl viologen at different electrolyte solution

1Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Tembalang, Semarang, Indonesia

2Center of Advanced Material for Sustainability Universitas Diponegoro, Indonesia

3SDGs Center, Universitas Diponegoro, Tembalang, Semarang, Indonesia

4 Department of Chemical Engineering, Universitas Pembangunan Nasional “Veteran”, Jawa Timur, Indonesia

5 Department of Chemical Engineering, Universiti Teknologi MARA, Malaysia

View all affiliations
Received: 1 Mar 2024; Revised: 28 Jun 2024; Accepted: 5 Jul 2024; Available online: 14 Jul 2024; Published: 1 Sep 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The practice of using wind and solar energy to generate electricity represents a solution that would be beneficial for the environment and ought to be explored. However, in order to ensure users' stability and continuous access to electricity, the increasing usage of renewable energy needs to align with the advancement of energy storage technologies. Redox flow batteries, which use an organic solution as the electrolyte and a proton exchange membrane as an ion exchange layer, are currently the subject of extensive research as one of the alternative renewable energy storage systems with the benefit of a techno economy. This study investigated the solubility of organic solution, namely 2,2,6,6-Tetramethylpiperidinyloxy or 2,2,6,6-Tetramethylpiperidine 1-oxyl (TEMPO) and methyl viologen (MV) in various essential electrolyte solutions such as NaCl, KCl, KOH, and H2SO4 that can be used as electrolytes of all organic redox flow battery (AORFB) system to produce high energy density and charging and discharging capacity. The result shows the optimum condition for effective charge transfer in AORFB is TEMPO catholyte and MV anolytes in the 0.08 M H2SO4electrolyte solution. Additionally, a correlation between the acquisition of electrolyte solutions on TEMPO catalyst and MV anolytes was discovered by the data. Electrolyte solution can improve electrical conductivity in TEMPO solution, which in turn can improve the efficiency of AORFB charging and discharging. Contrarily, MV anolytes exhibit a different pattern where the addition of electrolyte solutions reduces their electrical conductivity. RFBs systems with the aforementioned catholyte and anolyte can be used to store solar energy with a maximum current of 0.6 A for 35 minutes. Storage effectiveness is characterized by a change in colour in the catholyte and anolyte. The findings firming the possibility of using AORFB as one of the alternative energy storage systems that can accommodate the intermittence of the renewable energy input resource. 
Fulltext View|Download
Keywords: redox flow battery; anolyte; catholyte; methyl viologen; TEMPO

Article Metrics:

  1. Alotto, P., Guarnieri, M., Moro, F., & Stella, A. (2012). Redox Flow Batteries for large scale energy storage. 2012 IEEE International Energy Conference and Exhibition, ENERGYCON 2012, 293–298. https://doi.org/10.1109/EnergyCon.2012.6347770
  2. Arabkoohsar, A. (2021). Classification of Energy Storage Systems. In A. Arabkoohsar (Ed.), Mechanical Energy Storage Technologies (pp. 1–12). Academic Press. https://doi.org/10.1016/B978-0-12-820023-0.00001-8
  3. Aren, L. F., & Walsh, F. C. (2022). Redox Flow Batteries for Energy Storage. In ncyclopedia of Energy Storage, Elsevier (pp. 394–406). Elsevier Inc. https://doi.org/10.1016/B978-0-12-819723-3.00049-4
  4. Arnbjerg, J., Khataee, A., Breitenbach, T., Thøgersen, J., Christiansen, S., Gavlshøj Mortensen, H., Bilde, M., Frøhlich Hougaard, R., & Bentien, A. (2019). Battery Concepts in Physical Chemistry: Making Your Own Organic-Inorganic Battery [Research-article]. Journal of Chemical Education, 96(7), 1465–1471. https://doi.org/10.1021/acs.jchemed.9b00090
  5. Asenjo-Pascual, J., Salmeron-Sanchez, I., Avilés-Moreno, J. R., Mauleón, P., Mazur, P., & Ocón, P. (2022). Understanding Aqueous Organic Redox Flow Batteries: A Guided Experimental Tour from Components Characterization to Final Assembly. Batteries, 8(10). https://doi.org/10.3390/batteries8100193
  6. Badwal, S. P. S., Giddey, S. S., Munnings, C., Bhatt, A. I., & Hollenkamp, A. F. (2014). Emerging electrochemical energy conversion and storage technologies. Frontiers in Chemistry, 2(SEP), 1–28. https://doi.org/10.3389/fchem.2014.00079
  7. Bird, C. L., & Kuhn, A. T. (1981). Electrochemistry of the viologens. Chemical Society Reviews, 10(1), 49–82. https://doi.org/10.1039/CS9811000049
  8. Chai, J., Lashgari, A., & Jiang, J. J. (2020). Electroactive Materials for Next-Generation Redox Flow Batteries: From Inorganic to Organic [Chapter]. ACS Symposium Series, 1364, 1–47. https://doi.org/10.1021/bk-2020-1364.ch001
  9. Chamundeswari, V., Niraimathi, R., Shanthi, M., & Subahani, A. M. (2021). Renewable energy technologies. Integration of Renewable Energy Sources with Smart Grid, 1–18. https://doi.org/10.1002/9781119751908.ch1
  10. Chen, H., Cong, G., & Lu, Y. C. (2018). Recent progress in organic redox flow batteries: Active materials, electrolytes and membranes. Journal of Energy Chemistry, 27(5), 1304–1325. https://doi.org/10.1016/j.jechem.2018.02.009
  11. Chen, R., Kim, S., & Chang, Z. (2017). Redox Flow Batteries: Fundamentals and Applications. Redox - Principles and Advanced Applications. https://doi.org/10.5772/intechopen.68752
  12. DeBruler, C., Hu, B., Moss, J., Liu, X., Luo, J., Sun, Y., & Liu, T. L. (2017). Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries. Chem, 3(6), 961–978. https://doi.org/10.1016/j.chempr.2017.11.001
  13. Díaz-González, F., Sumper, A., Gomis-Bellmunt, O., & Villafáfila-Robles, R. (2012). A review of energy storage technologies for wind power applications. Renewable and Sustainable Energy Reviews, 16(4), 2154–2171. https://doi.org/10.1016/j.rser.2012.01.029
  14. Ding, Y., Li, Y., & Yu, G. (2016). Exploring Bio-inspired Quinone-Based Organic Redox Flow Batteries: A Combined Experimental and Computational Study. Chem, 1(5), 790–801. https://doi.org/10.1016/j.chempr.2016.09.004
  15. Ding, Y., Zhang, C., Zhang, L., Zhou, Y., & Yu, G. (2018). Molecular engineering of organic electroactive materials for redox flow batteries. Chemical Society Reviews, 47(1), 69–103. https://doi.org/10.1039/c7cs00569e
  16. Dunn, B., Kamath, H., & Tarascon, J. M. (2011). Electrical energy storage for the grid: A battery of choices. Science, 334(6058), 928–935. https://doi.org/10.1126/science.1212741
  17. Fischer, P., Mazúr, P., & Krakowiak, J. (2022). Family Tree for Aqueous Organic Redox Couples for Redox Flow Battery Electrolytes: A Conceptual Review. Molecules, 27(2), 1–39. https://doi.org/10.3390/molecules27020560
  18. Gong, K., Fang, Q., Gu, S., Li, S. F. Y., & Yan, Y. (2015). Nonaqueous redox-flow batteries: Organic solvents, supporting electrolytes, and redox pairs. Energy and Environmental Science, 8(12), 3515–3530. https://doi.org/10.1039/c5ee02341f
  19. Gong, K., Fang, Q., Shuang, G., Li, S. F. Y., & Yan, Y. (2014). Nonaqueous Redox-Flow Batteries: Organic Solvents, Supporting Electrolytes, and Redox Pairs. AIChE Annual Meeting, Conference Proceedings, 2019-Novem. https://doi.org/0.1039/x0xx00000x
  20. Gu, Y., Hong, W., Choi, W., Park, J.-Y., Kim, K. B., Lee, N., & Seo, Y. (2014). Electrochromic Device Containing Heptyl Viologen, PEDOT, TiO 2 and TEMPO. Journal of The Electrochemical Society, 161(12), H716–H721. https://doi.org/10.1149/2.0081412jes
  21. Han, C., Li, H., Shi, R., Zhang, T., Tong, J., Li, J., & Li, B. (2019). Organic quinones towards advanced electrochemical energy storage: Recent advances and challenges. Journal of Materials Chemistry A, 7(41), 23378–23415. https://doi.org/10.1039/c9ta05252f
  22. Hu, B., Debruler, C., Rhodes, Z., & Liu, T. L. (2017). Long-Cycling aqueous organic Redox flow battery (AORFB) toward sustainable and safe energy storage. Journal of the American Chemical Society, 139(3), 1207–1214. https://doi.org/10.1021/jacs.6b10984
  23. Hu, B., & Liu, T. L. (2018). Two electron utilization of methyl viologen anolyte in nonaqueous organic redox flow battery. Journal of Energy Chemistry, 27(5), 1326–1332. https://doi.org/10.1016/j.jechem.2018.02.014
  24. Hu, B., Tang, Y., Luo, J., Grove, G., Guo, Y., & Liu, T. L. (2018). Improved radical stability of viologen anolytes in aqueous organic redox flow batteries. Chemical Communications, 54(50), 6871–6874. https://doi.org/10.1039/c8cc02336k
  25. Hu, S., Wang, L., Yuan, X., Xiang, Z., Huang, M., Luo, P., Liu, Y., Fu, Z., & Liang, Z. (2021). Viologen-Decorated TEMPO for Neutral Aqueous Organic Redox Flow Batteries. Energy Material Advances, 2021, 1–8. https://doi.org/10.34133/2021/9795237
  26. Jang, S.-S., Park, S.-K., Yeon, S.-H., Shin, K.-H., Song, H., Kim, H., Jung, Y. S., & jin, changsoo. (2021). Methyl Viologen Anolyte Introducing Nitrate as Counter-Anion for an Aqueous Redox Flow Battery. Journal of The Electrochemical Society, 1–9. https://doi.org/10.1149/1945-7111/ac2759
  27. Janoschka, T., Martin, N., Hager, M. D., & Schubert, U. S. (2016). An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Angewandte Chemie - International Edition, 55(46), 14427–14430. https://doi.org/10.1002/anie.201606472
  28. Janoschka, T., Martin, N., Martin, U., Friebe, C., Morgenstern, S., Hiller, H., Hager, M. D., & Schubert, U. S. (2015). An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 527(7576), 78–81. https://doi.org/10.1038/nature15746
  29. Jones, A. E., Ejigu, A., Wang, B., Adams, R. W., Bissett, M. A., & Dryfe, R. A. W. (2022). Quinone voltammetry for redox-flow battery applications. Journal of Electroanalytical Chemistry, 920(February), 116572. https://doi.org/10.1016/j.jelechem.2022.116572
  30. Joseph, A., Sobczak, J., Żyła, G., & Mathew, S. (2022). Ionic Liquid and Ionanofluid-Based Redox Flow Batteries—A Mini Review. Energies, 15(13). https://doi.org/10.3390/en15134545
  31. Kim, S., Vijayakumar, M., Wang, W., Zhang, J., Chen, B., Nie, Z., Chen, F., Hu, J., Li, L., & Yang, Z. (2011). Chloride supporting electrolytes for all-vanadium redox flow batteries. Physical Chemistry Chemical Physics, 13(40), 18186–18193. https://doi.org/10.1039/c1cp22638j
  32. Kwabi, D. G., Ji, Y., & Aziz, M. J. (2020). Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. Chemical Reviews, 120(14), 6467–6489. https://doi.org/10.1021/acs.chemrev.9b00599
  33. Leadbetter, J., & Swan, L. G. (2012). Selection of battery technology to support grid-integrated renewable electricity. Journal of Power Sources, 216, 376–386. https://doi.org/10.1016/j.jpowsour.2012.05.081
  34. Leverick, G., & Shao-Horn, Y. (2023). Controlling Electrolyte Properties and Redox Reactions Using Solvation and Implications in Battery Functions: A Mini-Review. Advanced Energy Materials, 2204094. https://doi.org/10.1002/aenm.202204094
  35. Li, Z., Li, S., Liu, S., Huang, K., Fang, D., Wang, F., & Peng, S. (2011). Electrochemical properties of an all-organic redox flow battery using 2,2,6,6-tetramethyl-1-piperidinyloxy and N-Methylphthalimide. Electrochemical and Solid-State Letters, 14(12), 1–4. https://doi.org/10.1149/2.012112esl
  36. Likit-Anurak, K., Uthaichana, K., Punyawudho, K., & Khunatorn, Y. (2017). The Performance and Efficiency of Organic Electrolyte Redox Flow Battery Prototype. Energy Procedia, 118, 54–62. https://doi.org/10.1016/j.egypro.2017.07.012
  37. Lim, T. M., Ulaganathan, M., & Yan, Q. (2015). Advances in membrane and stack design of redox flow batteries (RFBs) for medium- and large-scale energy storage. In Chris Menictas, M. Skyllas-Kazacos, & T. M. Lim (Eds.), Advances in Batteries for Medium and Large-Scale Energy Storage (pp. 477–507). Woodhead Publishing. https://doi.org/10.1016/B978-1-78242-013-2.00014-5
  38. Liu, S., Zhou, M., Ma, T., Liu, J., Zhang, Q., Tao, Z., & Liang, J. (2020). A symmetric aqueous redox flow battery based on viologen derivative. Chinese Chemical Letters, 31(6), 1690–1693. https://doi.org/10.1016/j.cclet.2019.11.033
  39. Liu, T., Wei, X., Nie, Z., Sprenkle, V., & Wang, W. (2016a). A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte. Advanced Energy Materials, 6(3). https://doi.org/10.1002/aenm.201501449
  40. Liu, T., Wei, X., Nie, Z., Sprenkle, V., & Wang, W. (2016b). A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte. Advanced Energy Materials, 6(3), 1501449-n/a. https://doi.org/10.1002/aenm.201501449
  41. Liu, Y., Chen, Q., Sun, P., Li, Y., Yang, Z., & Xu, T. (2021). Organic electrolytes for aqueous organic flow batteries. Materials Today Energy, 20. https://doi.org/10.1016/j.mtener.2020.100634
  42. Liu, Y., Goulet, M. A., Tong, L., Liu, Y., Ji, Y., Wu, L., Gordon, R. G., Aziz, M. J., Yang, Z., & Xu, T. (2019). A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical. Chem, 5(7), 1861–1870. https://doi.org/10.1016/j.chempr.2019.04.021
  43. Monk, P. M. S. (1999). The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4'-Bipyridine. Wiley. ISBN: 978-0-471-98603-4
  44. Murugavel, K. (2014). Benzylic Viologen Dendrimers: Review of Synthesis, Properties and Applications Polymer Chemistry. Polymer Chemistry, 5(20), 5873-5884. https://doi.org/10.1039/C4PY00718B
  45. Nguyen, T., & Savinell, R. F. (2010). Flow batteries. Electrochemical Society Interface, 19(3), 54–56
  46. Pan, M., Shao, M., & Jin, Z. (2023). Development of organic redox‐active materials in aqueous flow batteries: Current strategies and future strategies. SmartMat. 4(4), e1198. https://doi.org/10.1002/smm2.1198
  47. Park, M., Beh, E. S., Fell, E. M., Jing, Y., Kerr, E. F., De Porcellinis, D., Goulet, M. A., Ryu, J., Wong, A. A., Gordon, R. G., Cho, J., & Aziz, M. J. (2019). A High Voltage Aqueous Zinc–Organic Hybrid Flow Battery. Advanced Energy Materials, 9(25), 1–8. https://doi.org/10.1002/aenm.201900694
  48. Singer, L. E., & Peterson, D. (2011). International energy outlook 2010. In International Energy Outlook and Projections (Vol. 0484, Issue May)
  49. Soloveichik, G. L. (2015). Flow Batteries: Current Status and Trends. Chemical Reviews, 115(20), 11533–11558. https://doi.org/10.1021/cr500720t
  50. Strielkowski, W., Tarkhanova, E., Tvaronaviˇ, M., & Petrenko, Y. (2021). Renewable Energy in the Sustainable Development of Electrical. 1–24
  51. Tang, L., Leung, P., Xu, Q., Mohamed, M. R., Dai, S., Zhu, X., Flox, C., & Shah, A. A. (2022). Future perspective on redox flow batteries: aqueous versus nonaqueous electrolytes. Current Opinion in Chemical Engineering, 37, 100833. https://doi.org/10.1016/j.coche.2022.100833
  52. Wang, W., Luo, Q., Li, B., Wei, X., Li, L., & Yang, Z. (2013). Recent progress in redox flow battery research and development. Advanced Functional Materials, 23(8), 970–986. https://doi.org/10.1002/adfm.201200694
  53. Wedege, K., Dražević, E., Konya, D., & Bentien, A. (2016). Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility. Scientific Reports, 6(November), 1–13. https://doi.org/10.1038/srep39101
  54. Wei, X., Pan, W., Duan, W., Hollas, A., Yang, Z., Li, B., Nie, Z., Liu, J., Reed, D., Wang, W., & Sprenkle, V. (2017). Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. In ACS Energy Letters, 2(9). https://doi.org/10.1021/acsenergylett.7b00650
  55. Winsberg, J., Hagemann, T., Janoschka, T., Hager, M. D., & Schubert, U. S. (2017). Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angewandte Chemie - International Edition, 56(3), 686–711. https://doi.org/10.1002/anie.201604925
  56. Wu, X., Liu, J., Xiang, X., Zhang, J., Hu, J., & Wu, Y. (2014). Electrolytes for vanadium redox flow batteries. Pure and Applied Chemistry, 86(5), 661–669. https://doi.org/10.1515/pac-2013-1213
  57. Yang, B., Hoober-Burkhardt, L., Wang, F., Surya Prakash, G. K., & Narayanan, S. R. (2014). An Inexpensive Aqueous Flow Battery for Large-Scale Electrical Energy Storage Based on Water-Soluble Organic Redox Couples. Journal of The Electrochemical Society, 161(9), A1371–A1380. https://doi.org/10.1149/2.1001409jes
  58. Yang, Z., Zhang, J., Kintner-Meyer, M. C. W., Lu, X., Choi, D., Lemmon, J. P., & Liu, J. (2011). Electrochemical energy storage for green grid. Chemical Reviews, 111(5), 3577–3613. https://doi.org/10.1021/cr100290v
  59. Yao, Y., Lei, J., Shi, Y., Ai, F., & Lu, Y. C. (2021). Assessment methods and performance metrics for redox flow batteries. Nature Energy, 6(6), 582–588. https://doi.org/10.1038/s41560-020-00772-8
  60. Yuan, Z., Zhang, H., & Li, X. (2018). Ion conducting membranes for aqueous flow battery systems. Chemical Communications, 54(55), 7570–7588. https://doi.org/10.1039/C8CC03058H
  61. Zanzola, E., Dennison, C. R., Battistel, A., Peljo, P., Vrubel, H., Amstutz, V., & Girault, H. H. (2017). Redox Solid Energy Boosters for Flow Batteries: Polyaniline as a Case Study. Electrochimica Acta, 235, 664–671. https://doi.org/10.1016/j.electacta.2017.03.084
  62. Zhang, C., Niu, Z., Ding, Y., Zhang, L., Zhou, Y., Guo, X., Zhang, X., Zhao, Y., & Yu, G. (2018). Highly Concentrated Phthalimide-Based Anolytes for Organic Redox Flow Batteries with Enhanced Reversibility. Chem, 4(12), 2814–2825. https://doi.org/10.1016/j.chempr.2018.08.024
  63. Zhang, C., Zhang, L., Ding, Y., Peng, S., Guo, X., Zhao, Y., He, G., & Yu, G. (2018). Progress and prospects of next-generation redox flow batteries. Energy Storage Materials, 15(March), 324–350. https://doi.org/10.1016/j.ensm.2018.06.008
  64. Zhang, H., Lu, W., & Li, X. (2019). Progress and Perspectives of Flow Battery Technologies. Electrochemical Energy Reviews, 2(3), 492–506. https://doi.org/10.1007/s41918-019-00047-1
  65. Zhen, Y., & Li, Y. (2019). Redox flow battery. In Studies in Surface Science and Catalysis (Vol. 179, pp. 385–413). https://doi.org/10.1016/B978-0-444-64337-7.00020-3
  66. Zhou, H., Zhang, R., Ma, Q., Li, Z., Su, H., Lu, P., Yang, W., & Xu, Q. (2023). Modeling and Simulation of Non-Aqueous Redox Flow Batteries: A Mini-Review. Batteries, 9(4), 1–13. https://doi.org/10.3390/batteries9040215
  67. Zsiborács, H., Baranyai, N. H., Vincze, A., Zentkó, L., Birkner, Z., Máté, K., & Pintér, G. (2019). Intermittent renewable energy sources: The role of energy storage in the european power system of 2040. Electronics (Switzerland), 8(7). https://doi.org/10.3390/electronics8070729

Last update:

No citation recorded.

Last update: 2024-10-12 02:20:25

No citation recorded.