School of Electrical Engineering, Nanjing Vocational University of Industry Technology, Nanjing, 210023, China
BibTex Citation Data :
@article{IJRED60218, author = {Hongxin Zhang}, title = {Application of day-ahead optimal scheduling model based on multi-energy micro-grids with uncertainty in wind and solar energy and energy storage station}, journal = {International Journal of Renewable Energy Development}, volume = {13}, number = {5}, year = {2024}, keywords = {Wind and solar uncertainty; Multi-energy micro-grid; Energy storage station; Optimal scheduling; Probability model}, abstract = { Multi-energy micro-grid has received widespread attention in the wave of continuous promotion and development of renewable energy. However, in the face of wind and solar uncertainty, its scheduling model needs to be further optimized. Therefore, a multi-energy micro-grid day-ahead optimal scheduling model was proposed to construct wind and solar uncertainty scenarios, and the application of energy storage station was considered. Multiple algorithms were introduced to propose the multi-energy micro-grid day-ahead optimal scheduling model. Finally, the research content was validated. The results confirmed that the wind and solar power output probability model could describe the characteristics of wind and solar power output at different periods. The generated scenes had a large number of wind speeds in the range of 1.5 m/s to 5 m/s, and the light intensity reached its peak at 14:00, which was consistent with the historical data of the research object. In addition, the total pre-scheduling cost of this optimized scheduling model within a day was 45.16×10 5 yuan, while the actual scheduling cost within a day was only 21.46×10 5 yuan. It saved costs by 41.65% and 44.95%, respectively, compared to the comparison algorithms. The research has driven innovation and optimization of the multi-energy micro-grid scheduling model. This provides a useful theoretical and practical basis for addressing the uncertainty of wind and solar energy and improving the economic efficiency of energy systems, which is crucial for the sustainable development of new energy. }, pages = {873--883} doi = {10.61435/ijred.2024.60218}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60218} }
Refworks Citation Data :
Multi-energy micro-grid has received widespread attention in the wave of continuous promotion and development of renewable energy. However, in the face of wind and solar uncertainty, its scheduling model needs to be further optimized. Therefore, a multi-energy micro-grid day-ahead optimal scheduling model was proposed to construct wind and solar uncertainty scenarios, and the application of energy storage station was considered. Multiple algorithms were introduced to propose the multi-energy micro-grid day-ahead optimal scheduling model. Finally, the research content was validated. The results confirmed that the wind and solar power output probability model could describe the characteristics of wind and solar power output at different periods. The generated scenes had a large number of wind speeds in the range of 1.5 m/s to 5 m/s, and the light intensity reached its peak at 14:00, which was consistent with the historical data of the research object. In addition, the total pre-scheduling cost of this optimized scheduling model within a day was 45.16×105 yuan, while the actual scheduling cost within a day was only 21.46×105 yuan. It saved costs by 41.65% and 44.95%, respectively, compared to the comparison algorithms. The research has driven innovation and optimization of the multi-energy micro-grid scheduling model. This provides a useful theoretical and practical basis for addressing the uncertainty of wind and solar energy and improving the economic efficiency of energy systems, which is crucial for the sustainable development of new energy.
Article Metrics:
Last update:
Last update: 2024-10-10 15:50:23
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.