skip to main content

Low voltage ride through (LVRT) enhancement of a two-stage grid-connected photovoltaic system based on finite-control-set model predictive control strategy

Faculty of Electrical and Computer Engineering, Urmia University, Urmia, Iran, Islamic Republic of

Received: 22 Sep 2024; Revised: 16 Dec 2024; Accepted: 17 Jan 2025; Available online: 7 Mar 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Grid-connected photovoltaic (PV) systems face numerous challenges during grid faults, including fault detection, synchronization, over-current protection, fluctuations in DC-link voltage, and compliance with active and reactive power requirements. This paper presents a control strategy based on finite-control set model predictive control (FCS-MPC) to enhance the LVRT capability of these systems. The strategy incorporates a battery energy storage system (BESS) to improve overall performance. Unlike traditional approaches, the proposed method integrates the control of all switches in boost converters, the BSS controller, and the neutral point clamped (NPC) inverter in one controller. It also combines the Maximum Power Point Tracking (MPPT) within a unified multi-objective cost function framework. By utilizing the positive sequence component of the current, this strategy facilitates symmetrical sinusoidal current injection during grid faults, effectively regulates the DC-link voltage, and maintains balanced capacitor voltages in the NPC inverter while avoiding over-current conditions. The BSS plays a key role in energy management by allowing the PV system to continue operating in MPPT mode during grid faults and enabling the storage of excess solar energy during disturbances. This capability ensures compliance with LVRT grid codes by efficiently managing the injection of reactive and active currents into a compromised grid. The proposed method reduces reliance on traditional cascaded hierarchical control loops, enhancing both dynamic response and system robustness during disturbances. The simulation studies carried out in MATLAB/Simulink environment on a 100 kW three-phase grid-connected PV system demonstrate the effectiveness of the proposed approach. The results indicate that the strategy maintains PV system performance at the maximum power point while significantly improving LVRT capability and overall grid stability. According to the simulation results, although in severe grid faults, the negative sequence grid current is kept at less than 1% and the voltage balance of the capacitors in the NPC inverter is maintained accurately. Also, the voltage ripples on the DC-link capacitors are limited to 7% in the fault period. In conclusion, this integrated control strategy effectively addresses the challenges posed by grid faults and enhances the operational efficiency of grid-connected PV systems, thereby contributing to the resilience of renewable energy infrastructures.
Fulltext View|Download
Keywords: Grid-connected PV system; Low voltage ride-through (LVRT); NPC inverter; Finite control set model predictive control, Inverter fault current limiting; Positive and negative sequence component decomposition

Article Metrics:

  1. Abdelsalam, A. K., Massoud, A. M., Ahmed, S., & Enjeti, P. N. (2011). High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Transactions on Power Electronics, 26(4), 1010-1021. https://doi.org/10.1109/tpel.2011.2106221
  2. Abramovitz, A., & Smedley, M. (2012). Survey of solid-state fault current limiters. IEEE Transactions on Power Electronics, 27(6), 2770-2782. https://doi.org/10.1109/tpel.2011.2174804
  3. Afshari, E., Moradi, G. R., Rahimi, R., Farhangi, B., Yang, Y., Blaabjerg, F., & Farhangi, S. (2017). Control strategy for three-phase grid-connected PV inverters enabling current limitation under unbalanced faults. IEEE Transactions on industrial electronics, 64(11), 8908-8918. https://doi.org/10.1109/tie.2017.2733481
  4. Ahmed, M., Harbi, I., Kennel, R., Rodríguez, J., & Abdelrahem, M. (2022). Maximum power point tracking-based model predictive control for photovoltaic systems: Investigation and new perspective. Sensors, 22(8), 3069. https://doi.org/10.3390/s22083069
  5. Al-Shetwi, A. Q., Hannan, M., Jern, K. P., Alkahtani, A. A., & PG Abas, A. (2020). Power quality assessment of grid-connected PV system in compliance with the recent integration requirements. Electronics, 9(2), 366. https://doi.org/10.3390/electronics9020366
  6. Al‐Shetwi, A. Q., & Sujod, M. Z. (2018). Grid‐connected photovoltaic power plants: A review of the recent integration requirements in modern grid codes. International Journal of Energy Research, 42(5), 1849-1865. https://doi.org/10.1002/er.3983
  7. Alam, M. S., Abido, M., Hossain, M. I., Choudhury, M. S. H., & Uddin, M. A. (2018). Series dynamic braking resistor based protection scheme for inverter based distributed generation system. 2018 International Conference on Innovations in Science, Engineering and Technology (ICISET), https://doi.org/10.1109/ICISET.2018.8745629
  8. Alrubaie, A. J., Al-Khaykan, A., Malik, R., Talib, S. H., Mousa, M. I., & Kadhim, A. M. (2022). Review on MPPT Techniques in Solar System. 2022 8th International Engineering Conference on Sustainable Technology and Development (IEC), https://doi.org/10.1109/IEC54822.2022.9807500
  9. Anagreh, Y. N., Alnassan, A., & Radaideh, A. (2021). High Performance MPPT Approach for Off-Line PV System Equipped With Storage Batteries and Electrolyzer. International Journal of Renewable Energy Development, 10(3). https://doi.org/10.14710/ijred.2021.34131
  10. Asghar, R., Rehman, F., Ullah, Z., Aman, A., Iqbal, K., & Ali Nawaz, A. (2020). Modified switch type fault current limiter for low‐voltage ride‐through enhancement and reactive power support of DFIG‐WT under grid faults. IET Renewable Power Generation, 14(9), 1481-1490. https://doi.org/10.1049/iet-rpg.2019.1058
  11. Camacho, A., Castilla, M., Miret, J., Borrell, A., & de Vicuña, L. G. (2014). Active and reactive power strategies with peak current limitation for distributed generation inverters during unbalanced grid faults. IEEE Transactions on industrial electronics, 62(3), 1515-1525. https://doi.org/10.1109/TIE.2014.2347266
  12. Castilla, M., Miret, J., Sosa, J. L., Matas, J., & de Vicuña, L. G. (2010). Grid-fault control scheme for three-phase photovoltaic inverters with adjustable power quality characteristics. IEEE Transactions on Power Electronics, 25(12), 2930-2940. https://doi.org/10.1109/TPEL.2010.2070081
  13. Chen, H.-C., Lee, C.-T., Cheng, P.-T., Teodorescu, R., & Blaabjerg, F. (2016). A low-voltage ride-through technique for grid-connected converters with reduced power transistors stress. IEEE Transactions on Power Electronics, 31(12), 8562-8571. https://doi.org/10.1109/TPEL.2016.2522511
  14. Djilali, L., Sanchez, E. N., Ornelas-Tellez, F., Avalos, A., & Belkheiri, M. (2019). Improving microgrid low-voltage ride-through capacity using neural control. IEEE Systems Journal, 14(2), 2825-2836. https://doi.org/10.1109/JSYST.2019.2947840
  15. Donoso, F., Mora, A., Cardenas, R., Angulo, A., Saez, D., & Rivera, M. (2017). Finite-set model-predictive control strategies for a 3L-NPC inverter operating with fixed switching frequency. IEEE Transactions on industrial electronics, 65(5), 3954-3965. https://doi.org/10.1109/TIE.2017.2760840
  16. Dursun, M., & DÖŞOĞLU, M. K. (2018). LCL filter design for grid connected three-phase inverter. 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), https://doi.org/10.1109/ISMSIT.2018.8567054
  17. Farrokhabadi, M., Cañizares, C. A., Simpson-Porco, J. W., Nasr, E., Fan, L., Mendoza-Araya, P. A., Tonkoski, R., Tamrakar, U., Hatziargyriou, N., & Lagos, D. (2019). Microgrid stability definitions, analysis, and examples. IEEE Transactions on Power Systems, 35(1), 13-29. https://doi.org/10.1109/TPWRS.2019.2925703
  18. Gulalkari, M., & Chaudhary, M. (2020). Control Technique with Integrated Low Voltage Ride Through Capability and Anti-Islanding in Grid Connected Inverter. 2020 IEEE First International Conference on Smart Technologies for Power, Energy and Control (STPEC), https://doi.org/10.1109/STPEC49749.2020.9297734
  19. Haidar, A. M., & Julai, N. (2019). An improved scheme for enhancing the ride-through capability of grid-connected photovoltaic systems towards meeting the recent grid codes requirements. Energy for Sustainable Development, 50, 38-49. https://doi.org/10.1016/j.esd.2019.02.007
  20. Hassan, Z., Amir, A., Selvaraj, J., & Rahim, N. (2020). A review on current injection techniques for low-voltage ride-through and grid fault conditions in grid-connected photovoltaic system. Solar Energy, 207, 851-873. https://doi.org/10.1016/j.solener.2020.06.085
  21. Hossain, M. K., & Ali, M. H. (2014). Low voltage ride through capability enhancement of grid connected PV system by SDBR. 2014 IEEE PES T&D Conference and Exposition, https://doi.org/10.1109/TDC.2014.6863248
  22. Huka, G. B., Li, W., Chao, P., & Peng, S. (2018). A comprehensive LVRT strategy of two-stage photovoltaic systems under balanced and unbalanced faults. International Journal of Electrical Power & Energy Systems, 103, 288-301. https://doi.org/10.1016/j.ijepes.2018.06.014
  23. Ikaouassen, H., Raddaoui, A., Rezkallah, M., & Chandra, A. (2019). Real‐time implementation of improved predictive model control for standalone power generation system based PV renewable energy. IET Generation, Transmission & Distribution, 13(7), 1068-1077. https://doi.org/10.1049/iet-gtd.2018.501
  24. Jacobson, M. Z., von Krauland, A.-K., Coughlin, S. J., Dukas, E., Nelson, A. J. H., Palmer, F. C., & Rasmussen, K. R. (2022). Low-cost solutions to global warming, air pollution, and energy insecurity for 145 countries [10.1039/D2EE00722C]. Energy & Environmental Science. https://doi.org/10.1039/D2EE00722C
  25. Jalili, K., & Bernet, S. (2009). Design of $ LCL $ filters of active-front-end two-level voltage-source converters. IEEE Transactions on industrial electronics, 56(5), 1674-1689. https://doi.org/10.1109/TIE.2008.2011251
  26. Jalilian, A., Hagh, M. T., Abapour, M., & Muttaqi, K. M. (2015). DC-link fault current limiter-based fault ride-through scheme for inverter-based distributed generation. IET Renewable Power Generation, 9(6), 690-699. https://doi.org/10.1049/iet-rpg.2014.0289
  27. Jalilian, A., Naderi, S. B., Negnevitsky, M., & Hagh, M. T. (2018). Controllable DC-link bridge-type FCL for low voltage ride-through enhancement of converter interfaced DG systems. International Journal of Electrical Power & Energy Systems, 95, 653-663. https://doi.org/10.1016/j.ijepes.2017.09.022
  28. Katche, M. L., Makokha, A. B., Zachary, S. O., & Adaramola, M. S. (2023). A comprehensive review of maximum power point tracking (mppt) techniques used in solar pv systems. Energies, 16(5), 2206. https://doi.org/10.3390/en16052206
  29. Kerekes, T., Séra, D., & Máthé, L. (2017). Three-phase photovoltaic systems: structures, topologies, and control. In Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS® (pp. 67-90). CRC Press. https://doi.org/10.1080/15325008.2015.1030518
  30. Lashab, A., Sera, D., Guerrero, J. M., Mathe, L., & Bouzid, A. (2017). Discrete model-predictive-control-based maximum power point tracking for PV systems: Overview and evaluation. IEEE Transactions on Power Electronics, 33(8), 7273-7287. https://doi.org/10.1109/TPEL.2017.2764321
  31. Lee, C.-T., Hsu, C.-W., & Cheng, P.-T. (2011). A low-voltage ride-through technique for grid-connected converters of distributed energy resources. IEEE Transactions on Industry Applications, 47(4), 1821-1832. https://doi.org/10.1109/TIA.2011.2155016
  32. Lim, S., & Choi, J. (2015). LCL filter design for grid connected NPC type three-level inverter. International journal of renewable energy research, 5(1), 45-53
  33. Lin, X., Han, Y., Yang, P., Wang, C., & Xiong, J. (2018). Low-voltage ride-through techniques for two-stage photovoltaic system under unbalanced grid voltage sag conditions. 2018 IEEE 4th Southern Power Electronics Conference (SPEC), https://doi.org/10.1109/SPEC.2018.8636016
  34. Liu, H., Xu, K., Zhang, Z., Liu, W., & Ao, J. (2019). Research on theoretical calculation methods of photovoltaic power short-circuit current and influencing factors of its fault characteristics. Energies, 12(2), 316. https://doi.org/10.3390/en12020316
  35. Liu, Y., & Tian, L. (2016). Research on low voltage ride through technology of grid-connected photovoltaic system. 2016 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), https://doi.org/10.1109/ICSGCE.2016.7876055
  36. Liu, Y., Wang, C. S., & Cao, Y. (2022). A Finite Control Set Model Predictive Control Algorithm for PV Maximum Power Point Tracking. 2022 9th International Forum on Electrical Engineering and Automation (IFEEA), https://doi.org/10.1109/IFEEA57288.2022.10037837
  37. Mahmoudi, H., Moamaei, P., Aleenejad, M., & Ahmadi, R. (2017). A new maximum power point tracking method for photovoltaic applications based on finite control set model predictive control. 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), https://doi.org/10.1109/APEC.2017.7930834
  38. Miret, J., Castilla, M., Camacho, A., de Vicuña, L. G., & Matas, J. (2012). Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags. IEEE Transactions on Power Electronics, 27(10), 4262-4271. https://doi.org/10.1109/TPEL.2012.2191306
  39. Mirhosseini, M., Pou, J., & Agelidis, V. G. (2014). Single-and two-stage inverter-based grid-connected photovoltaic power plants with ride-through capability under grid faults. IEEE Transactions on sustainable energy, 6(3), 1150-1159. https://doi.org/10.1109/TSTE.2014.2347044
  40. Mohamed, S. R., Jeyanthy, P. A., Devaraj, D., Shwehdi, M., & Aldalbahi, A. (2019). DC-link voltage control of a grid-connected solar photovoltaic system for fault ride-through capability enhancement. Applied Sciences, 9(5), 952. https://doi.org/10.3390/app9050952
  41. Monfared, K. K., Neyshabouri, Y., Iman-Eini, H., & Liserre, M. (2022). An improved finite control-set model predictive control for nested neutral point clamped converter. IEEE Transactions on industrial electronics, 70(6), 5386-5398. https://doi.org/10.1109/TIE.2022.3196337
  42. Mortazavian, S., Shabestary, M. M., & Mohamed, Y. A.-R. I. (2016). Analysis and dynamic performance improvement of grid-connected voltage–source converters under unbalanced network conditions. IEEE Transactions on Power Electronics, 32(10), 8134-8149. https://doi.org/10.1109/TPEL.2016.2633994
  43. Naderi, S. B., Davari, P., Zhou, D., Negnevitsky, M., & Blaabjerg, F. (2018). A review on fault current limiting devices to enhance the fault ride-through capability of the doubly-fed induction generator based wind turbine. Applied Sciences, 8(11), 2059. https://doi.org/10.3390/app8112059
  44. Naderi, S. B., Negnevitsky, M., Jalilian, A., Hagh, M. T., & Muttaqi, K. M. (2017). Low voltage ride-through enhancement of DFIG-based wind turbine using DC link switchable resistive type fault current limiter. International Journal of Electrical Power & Energy Systems, 86, 104-119. https://doi.org/10.1016/j.ijepes.2016.10.001
  45. Naresh, P., & Kumar, V. S. S. (2020). Analysis of low voltage ride through techniques for grid-connected photovoltaic systems. 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), https://doi.org/10.1109/PESGRE45664.2020.9070365
  46. Nezhad, A. A., Zaker, B., Arani, A. A. K., & Gharehpetian, G. (2017). Impact of non-MPPT operation mode of PV system considering inverter fault current limiting. 2017 Conference on Electrical Power Distribution Networks Conference (EPDC), https://doi.org/10.1109/EPDC.2017.8012739
  47. Nguyena, T. H., Dang, Q. V., Ngo, X. C., & Do, N. Y. (2023). Long-term performance of roof-top GCPV systems in central Viet Nam. International Journal of Renewable Energy Development, 12(6). https://doi.org/10.14710/ijred.2023.56569
  48. Omar, M. A., & Mahmoud, M. M. (2021). Improvement approach for matching pv-array and inverter of grid connected pv systems verified by a case study. International Journal of Renewable Energy Development, 10(4), 687. https://doi.org/10.14710/ijred.2021.36082
  49. Pant, S., & Saini, R. (2019). Comparative study of MPPT techniques for solar photovoltaic system. 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON), https://doi.org/10.1109/UPCON47278.2019.8980004
  50. RajaMohamed, S., Jeyanthy, P. A., Devaraj, D., & Bouzguenda, M. (2019). Performance comparison of active and passive LVRT strategies for grid connected PV systems. 2019 IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), https://doi.org/10.1109/INCOS45849.2019.8951327
  51. Rashid, G., & Ali, M. H. (2014). A modified bridge-type fault current limiter for fault ride-through capacity enhancement of fixed speed wind generator. IEEE Transactions on Energy Conversion, 29(2), 527-534. https://doi.org/10.1109/TEC.2014.2304414
  52. Rodriguez, F., Bueno, E., Aredes, M., Rolim, L., Neves, F. A., & Cavalcanti, M. C. (2008). Discrete-time implementation of second order generalized integrators for grid converters. 2008 34th Annual Conference of IEEE Industrial Electronics, https://doi.org/10.1109/IECON.2008.4757948
  53. Rodriguez, P., Luna, A., Munoz-Aguilar, R. S., Etxeberria-Otadui, I., Teodorescu, R., & Blaabjerg, F. (2011). A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions. IEEE Transactions on Power Electronics, 27(1), 99-112. https://doi.org/10.1109/TPEL.2011.2159242
  54. Rodríguez, P., Pou, J., Bergas, J., Candela, J. I., Burgos, R. P., & Boroyevich, D. (2007). Decoupled double synchronous reference frame PLL for power converters control. IEEE Transactions on Power Electronics, 22(2), 584-592. https://doi.org/10.1109/TPEL.2006.890000
  55. Romero-Cadaval, E., Spagnuolo, G., Franquelo, L. G., Ramos-Paja, C. A., Suntio, T., & Xiao, W. M. (2013). Grid-connected photovoltaic generation plants: Components and operation. IEEE Industrial Electronics Magazine, 7(3), 6-20. https://doi.org/10.1109/MIE.2013.2264540
  56. Rossi, M., Karamanakos, P., & Castelli-Dezza, F. (2022). An Indirect Model Predictive Control Method for Grid-Connected Three-Level Neutral Point Clamped Converters With $ LCL $ Filters. IEEE Transactions on Industry Applications, 58(3), 3750-3768. https://doi.org/10.1109/TIA.2022.3152463
  57. Sadeghkhani, I., Golshan, M. E. H., Guerrero, J. M., & Mehrizi-Sani, A. (2016). A current limiting strategy to improve fault ride-through of inverter interfaced autonomous microgrids. IEEE Transactions on Smart Grid, 8(5), 2138-2148. https://doi.org/10.1109/TSG.2016.2517201
  58. Sadeghkhani, I., Hamedani Golshan, M. E., Mehrizi‐Sani, A., & Guerrero, J. M. (2018). Low‐voltage ride‐through of a droop‐based three‐phase four‐wire grid‐connected microgrid. IET Generation, Transmission & Distribution, 12(8), 1906-1914. https://doi.org/10.1049/iet-gtd.2017.1306
  59. Safaei, A., Zolfaghari, M., Gilvanejad, M., & Gharehpetian, G. B. (2020). A survey on fault current limiters: Development and technical aspects. International Journal of Electrical Power & Energy Systems, 118, 105729. https://doi.org/10.1016/j.ijepes.2019.105729
  60. Singh, O., & Gupta, S. K. (2018). A review on recent Mppt techniques for photovoltaic system. 2018 IEEMA Engineer Infinite Conference (eTechNxT), https://doi.org/10.1109/ETECHNXT.2018.8385315
  61. Smith, C., Gargoom, A., Arif, M. T., & Haque, M. E. (2024). Model predictive control of 3L‐NPC inverter to enhance fault ride through capability under unbalanced grid conditions. IET Power Electronics. https://doi.org/10.1049/pel2.12754
  62. Sobhy, T., Hemdan, N., Hamada, M., & Wahab, M. (2015). German grid code aspects discussion: low voltage ride-through of converter

Last update:

No citation recorded.

Last update: 2025-05-23 00:58:37

No citation recorded.