skip to main content

Formulation of Nb-doped ZnO nanoparticles towards improved photo conversion performance via luminescent down-shifting of the incident spectrum

1Faculty of Electronic and Computer Engineering and Technology Hang Tuah Jaya, 76100, University Technical Malaysia Malacca, Malaysia

2Department of Materials, Faculty of Engineering, Imperial College London, London SW7 2AZ, United Kingdom, United Kingdom

3Department of Electrical Engineering, College of Engineering, University Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Pahang, Kuantan, 26300, Malaysia

Received: 23 Dec 2024; Revised: 19 Feb 2025; Accepted: 13 Mar 2025; Available online: 20 Mar 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The quest for optimal solar energy utilization has prompted an investigation into materials and techniques, establishing luminescent down shifting (LDS). This method converts short-wavelength photons into longer wavelengths thus expanding the range of absorption. This may further enhance the efficiency of solar cell power conversion. Herein, the Zinc Oxide (ZnO) nanoparticle is introduced as a promising candidate for LDS, mainly due to its ability to convert light effectively and cost-savvy. This research delves into enhancing Niobium (Nb) doped ZnO particles that exhibit photoluminescent characteristics to improve energy conversion efficiency. The synthesis of 1% mol of Nb-doped ZnO nanoparticles on indium tin oxide (ITO) films was achieved using a low-temperature hydrothermal technique, varying the growth duration. Extensive analysis using XRD, SEM, and UV-Vis spectroscopy revealed that the optimal outcomes were achieved with an 8-hour growing period. The analysis revealed a hexagonal wurtzite crystal structure, characterized by prominent peaks on the (111) plane and a crystallite size of 37.18 nm. A morphology study indicated that the ZnO nanorods exhibited a randomly uniform oriented arrangement and a densely formed structure measuring 0.77 ± 0.02 μm. The samples exhibited promising optoelectronic properties based on the analysis, such as a characteristic bandgap of 3.35 eV, a transmittance of 46.54%, and an absorbance of 0.33 a.u .Furthermore, the electrical conductivity of the Nb-doped ZnO films was recorded at 1.62 mΩ⁻¹cm⁻¹.These findings suggest that controlling the Nb growth offers a promising avenue for optimizing the performance of Nb:ZnO nanoparticles for advanced solar energy conversion applications.
Fulltext View|Download
Keywords: Niobium; Zinc oxide nanoparticles; Down-shifting; Hydrothermal
Funding: Universiti Teknikal Malaysia, Melaka (UTeM)

Article Metrics:

  1. Abdulrahman, A. F., Ahmed, S. M., & Ahmed, N. M. (2018). Investigation of optical properties of ZnO nanorods grown on different substrates. Science Journal of University of Zakho, 6(4), 160–165. https://doi.org/10.25271/SJUOZ.2018.6.4.546
  2. Alias, N. S. N. M., Arith, F., Mustafa, A. N. M., Mustafa, A. N. M., Ismail, M. M., Chachuli, S. A. M., & Shah, A. S. M. (2022). Compatibility of Al-doped ZnO electron transport layer with various HTLs and absorbers in perovskite solar cells. Applied Optics, Vol. 61, Issue 15, Pp. 4535-4542, 61(15), 4535–4542. https://doi.org/10.1364/AO.455550
  3. Alias, N. S. N. M., Arith, F., Mustafa, A. N., Ismail, M. M., Azmi, N. F., & Saidon, M. S. (2022). Impact of Al on ZnO Electron Transport Layer in Perovskite Solar Cells. Journal of Engineering and Technological Sciences, 54(4). https://doi.org/10.5614/j.eng.technol.sci.2022.54.4.9
  4. Aliyaselvam, O. V., Arith, F., Rong, I. J., Zin, S. I., Ali, F. A., & Mustafa, A. N. (2022). Facile Synthesis of Copper Iodide at Low Temperature as Hole Transporting Layer for Perovskite Solar Cell. International Journal of Renewable Energy Research (IJRER), 12(2), 892–898. https://doi.org/10.20508/IJRER.V12I2.12825.G8473
  5. Anand, A., Islam, M. M., Meitzner, R., Schubert, U. S., & Hoppe, H. (2021). Introduction of a novel figure of merit for the assessment of transparent conductive electrodes in photovoltaics: Exact and approximate form. Advanced Energy Materials, 11(26), 2100875. https://doi.org/10.1002/aenm.202100875
  6. Ananda, S., Gowda, N. M. M., & Raksha, K. R. (2014). Synthesis of niobium doped ZnO nanoparticles by electrochemical method: characterization, photodegradation of indigo carmine dye and antibacterial study. Advances in Nanoparticles, 3(04), 133. https://doi.org/10.4236/anp.2014.34018
  7. Apostoluk, A., Zhu, Y., Canut, B., Masenelli, B., Delaunay, J. J., Znajdek, K., & Sibiński, M. (2013). Investigation of luminescent properties of ZnO nanoparticles for their use as a down-shifting layer on solar cells. Physica Status Solidi (C) Current Topics in Solid State Physics, 10(10), 1301–1307. https://doi.org/10.1002/PSSC.201200950
  8. Bagiyev, E., Balayeva, N., Aliyeva, Y., Kerimova, A., Valiyev, R., Mamiyev, Z., … Bayramov, A. (2015). Optimization of preparation technology of ZnO and ZnO: Al thin films for solar cell applications. Physica Status Solidi (c), 12(6), 536–539. https://doi.org/10.1002/PSSC.201400364
  9. Bazzari, H. H., Abushgair, K. N., Hamdan, M. A., & Alkhaldi, H. S. (2020). Cooling Solar Cells Using ZnO Nanoparticles as, Thermal Science 24(2A), 809–814. https://doi.org/10.2298/TSCI180324004B
  10. Cantarella, M., Spanò, V., Zimbone, M., Giuffrida, F., Lufrano, E., Strano, V., … Impellizzeri, G. (2024). ZnO–MoS2-PMMA polymeric nanocomposites: A harmless material for water treatment. Materials Today Chemistry, 36, 101912. https://doi.org/10.1016/J.MTCHEM.2024.101912
  11. Chvostová, D., Dejneka, A., Hubička, Z., Churpita, A., Bykov, P., Jastrabík, L., & Trepakov, V. A. (2011). Synthesis and optical properties of Mn doped ZnO thin films. Physica Status Solidi (a), 208(9), 2140–2143. https://doi.org/10.1002/pssa.201026630
  12. Çolak, H., Karaköse, E., & Sungür, Ç. (2023). Niobium doping effect on electrical and optical properties of ZnO nanorods produced by ultrasonic spray pyrolysis. Physica B: Condensed Matter, 671, 415455. https://doi.org/10.1016/J.PHYSB.2023.415455
  13. Dhawan, R., & Panda, E. (2019). Mg addition in undoped and Al-doped ZnO films: Fabricating near UV transparent conductor by bandgap engineering. Journal of Alloys and Compounds, 788, 1037–1047. https://doi.org/10.1016/J.JALLCOM.2019.02.289
  14. El Fakir, A., Sekkati, M., Schmerber, G., Belayachi, A., Edfouf, Z., Regragui, M., … Slaoui, A. (2017). Influence of Rare Earth (Nd and Tb) Co‐Doping on ZnO Thin Films Properties. Physica Status Solidi c, 14(10), 1700169. https://doi.org/10.1002/pssc.201700169
  15. Eswar, K. A., Mohamad, M., Akhir, R. M., Mashjur, I. N. Z., Zamri, N. Z., Rostan, N. F., … Malek, M. F. (2023). Morphological and optical properties of Nb-doped ZnO nanoparticles. Materials Today: Proceedings, 75, 74–78. https://doi.org/10.1016/j.matpr.2022.10.081
  16. Fu, C. F., Han, L. F., Liu, C., & Gao, Y. F. (2013). Effects of Cr-doping concentration on the structural, optical, and magnetic properties of ZnO thin films. Physica Status Solidi (a), 210(7), 1358–1362. https://doi.org/10.1002/PSSA.201329014
  17. Fudzi, L. M., Zainal, Z., Lim, H. N., Chang, S. K., Holi, A. M., & Ali, M. S. M. (2018). Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells. Materials (Basel, Switzerland), 11(5). https://doi.org/10.3390/MA11050704
  18. Gerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/C9CE01556F
  19. Guzman, E., Hochmuth, H., Lorenz, M., von Wenckstern, H., Rahm, A., Kaidashev, E. M., … Pöppl, A. (2004). Pulsed laser deposition of Fe‐and Fe, Cu‐doped ZnO thin films. Annalen Der Physik, 516(1–2), 57–58. https://doi.org/10.1002/andp.200451601-213
  20. Hammad, A. H., & Abdel-Wahab, M. S. (2021). Characterization of niobium-doped zinc oxide thin films: Structural changes and optical properties. Materials Today Communications, 26, 101791. https://doi.org/10.1016/j.mtcomm.2020.101791
  21. Hassanzadeh-Tabrizi, S. A. (2023). Precise calculation of crystallite size of nanomaterials: A review. Journal of Alloys and Compounds, 171914. https://doi.org/10.1016/j.jallcom.2023.171914
  22. He, J., Ye, J., Lavernia, E. J., Matejczyk, D., Bampton, C., & Schoenung, J. M. (2004). Quantitative analysis of grain size in bimodal powders by X-ray diffraction and transmission electron microscopy. Journal of Materials Science, 39, 6957–6964. https://doi.org/10.1023/B:JMSC.0000047538.95825.ad
  23. Ikram, M., Shahid, H., Haider, J., Haider, A., Naz, S., Ul-Hamid, A., … Ali, S. (2022). Nb/Starch-Doped ZnO Nanostructures for Polluted Water Treatment and Antimicrobial Applications: Molecular Docking Analysis, 7, 39361. https://doi.org/10.1021/acsomega.2c05569
  24. Ismail, A. S., Mamat, M. H., Md Sin, N. D., Malek, M. F., Zoolfakar, A. S., Suriani, A. B., … Rusop, M. (2016). Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol−gel immersion for room temperature, resistive-type humidity sensor applications. Ceramics International, 42(8), 9785–9795. https://doi.org/10.1016/J.CERAMINT.2016.03.071
  25. Ivanova, T., Harizanova, A., Koutzarova, T., Vertruyen, B., & Closset, R. (2022). Deposition of Sol–Gel ZnO:Mg Films and Investigation of Their Structural and Optical Properties. Materials, 15(24). https://doi.org/10.3390/MA15248883
  26. Jafari, H., Sadeghzadeh, S., Rabbani, M., & Rahimi, R. (2018). Effect of Nb on the structural, optical and photocatalytic properties of Al-doped ZnO thin films fabricated by the sol-gel method. Ceramics International, 44(16), 20170–20177. https://doi.org/10.1016/J.CERAMINT.2018.07.311
  27. Jalaludin, N. A., Salehuddin, F., Rahim, F. L., Mustafa, A. N., Kaharudin, K. E., Islam, M. A., … Arith, F. (2025). Efficient hole extraction by doped-polyaniline/graphene oxide in lead-free perovskite solar cell: a computational study. Physica Scripta, 100(2), 025924. https://doi.org/10.1088/1402-4896/ADA4E8
  28. Jusoh, Y. N., Arith, F., Khafe, A. M., Chachuli, S. A. M., Nor, M. K., Mustafa, A. N., & Salehuddin, F. (2024). Carrier Injection Mechanism of Nb-Doped ZnO Thin Films in Light Emission Properties. Przeglad Elektrotechniczny, (11), 95–98. https://doi.org/10.15199/48.2024.11.17
  29. Khalil, M. I., Al-Qunaibit, M. M., Al-zahem, A. M., & Labis, J. P. (2014). Synthesis and characterization of ZnO nanoparticles by thermal decomposition of a curcumin zinc complex. Arabian Journal of Chemistry, 7(6), 1178–1184. https://doi.org/10.1016/J.ARABJC.2013.10.025
  30. Khare, N., Kappers, M. J., Wei, M., Blamire, M. G., & MacManus‐Driscoll, J. L. (2006). Defect‐Induced Ferromagnetism in Co‐doped ZnO. Advanced Materials, 18(11), 1449–1452. https://doi.org/https://doi.org/10.1002/adma.200502200
  31. Kotlyarchuk, B., Savchuk, V., & Oszwaldowski, M. (2005). Preparation of undoped and indium doped ZnO thin films by pulsed laser deposition method. Crystal Research and Technology, 40(12), 1118–1123. https://doi.org/10.1002/CRAT.200410502
  32. Kumar, R., Umar, A., Kumar, G., Nalwa, H. S., Kumar, A., & Akhtar, M. S. (2017). Zinc oxide nanostructure-based dye-sensitized solar cells. Journal of Materials Science, 52, 4743–4795. https://doi.org/10.1007/s10853-016-0668-z
  33. Li, Z., Huang, X., Liu, J., Li, Y., & Li, G. (2008). Morphology control and transition of ZnO nanorod arrays by a simple hydrothermal method. Materials Letters, 62(10–11), 1503–1506. https://doi.org/10.1016/J.MATLET.2007.09.011
  34. Liu, M., Zhan, Q., Li, W., Li, R., He, Q., & Wang, Y. (2019). Effect of Zn doping concentration on optical band gap of PbS thin films. Journal of Alloys and Compounds, 792, 1000–1007. https://doi.org/10.1016/j.jallcom.2019.04.117
  35. Lu, Y. M., Chang, C. M., Tsai, S. I., & Wey, T. S. (2004). Improving the conductance of ZnO thin films by doping with Ti. Thin Solid Films, 447–448, 56–60. https://doi.org/10.1016/J.TSF.2003.09.022
  36. Ma, L., Ai, X., Huang, X., & Ma, S. (2011). Effects of the substrate and oxygen partial pressure on the microstructures and optical properties of Ti-doped ZnO thin films. Superlattices and Microstructures, 50(6), 703–712. https://doi.org/10.1016/j.spmi.2011.09.012
  37. Maghsoodi, M., & Yari, Z. (2014). Effect of temperature on wet agglomeration of crystals. Iran J Basic Med Sci, 17, 344–350. https://doi.org/10.22038/IJBMS.2014.2784
  38. Mohd Fudzi, L., Zainal, Z., Lim, H. N., Chang, S.-K., Holi, A. M., & Sarif@ Mohd Ali, M. (2018). Effect of temperature and growth time on vertically aligned ZnO nanorods by simplified hydrothermal technique for photoelectrochemical cells. Materials, 11(5), 704. https://doi.org/10.3390/ma11050704
  39. Mostafa, S., Besisa, D. H. A., Zahran, F., Ahmed, A., Elwan, M., Khalifa, A., & Ewais, E. M. M. (2024). Processing and enhancement of thermoelectric performance of Nb doped ZnO (NZO) ceramics. Ceramics International, 50(4), 6557–6566. https://doi.org/10.1016/J.CERAMINT.2023.11.403
  40. Mustaffa, M. A., Arith, F., Noorasid, N. S., Zin, M. S. I. M., Leong, K. S., Ali, F. A., … Ismail, M. M. (2022). Towards a Highly Efficient ZnO Based Nanogenerator. Micromachines 2022, Vol. 13, Page 2200, 13(12), 2200. https://doi.org/10.3390/MI13122200
  41. Naz, H., Ali, R. N., Liu, Q., Yang, S., & Xiang, B. (2018). Niobium doped zinc oxide nanorods as an electron transport layer for high-performance inverted polymer solar cells. Journal of Colloid and Interface Science, 512, 548–554. https://doi.org/10.1016/J.JCIS.2017.10.041
  42. Nguyen, T. H. A., Doan, V.-D., Tran, A. V., Nguyen, V. C., Nguyen, A.-T., & Vasseghian, Y. (2022). Green synthesis of Nb-doped ZnO nanocomposite for photocatalytic degradation of tetracycline antibiotic under visible light. Materials Letters, 308, 131129. https://doi.org/10.1016/j.matlet.2021.131129
  43. O’Brien, S., Nolan, M. G., Çopuroglu, M., Hamilton, J. A., Povey, I., Pereira, L., … Pemble, M. (2010). Zinc oxide thin films: Characterization and potential applications. Thin Solid Films, 518(16), 4515–4519. https://doi.org/10.1016/j.tsf.2009.12.020
  44. Özgür, M., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Demirkol, U., Elmas, S., … Korkmaz, Ş. (2019). Sn doped ZnO thin film deposition using thermionic vacuum arc technique. Journal of Alloys and Compounds, 774, 1017–1023. https://doi.org/10.1016/J.JALLCOM.2018.10.020
  45. Pascariu, P., Homocianu, M., Cojocaru, C., Samoila, P., Airinei, A., & Suchea, M. (2019). Preparation of La doped ZnO ceramic nanostructures by electrospinning–calcination method: Effect of La3+ doping on optical and photocatalytic properties. Applied Surface Science, 476, 16–27. https://doi.org/10.1016/J.APSUSC.2019.01.077
  46. Rodenbücher, C., Luysberg, M., Schwedt, A., Havel, V., Gunkel, F., Mayer, J., & Waser, & R. (2016). Homogeneity and variation of donor doping in Verneuil-grown SrTiO 3 :Nb single crystals. Nature Publishing Group. https://doi.org/10.1038/srep32250
  47. Sanz, O., Haro-Poniatowski, E., Gonzalo, J., & Fernández Navarro, J. M. (2006). Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. Journal of Non-Crystalline Solids, 352(8), 761–768. https://doi.org/10.1016/J.JNONCRYSOL.2006.02.002
  48. Saw, K. G., Aznan, N. M., Yam, F. K., Ng, S. S., & Pung, S. Y. (2015). New Insights on the Burstein-Moss Shift and Band Gap Narrowing in Indium-Doped Zinc Oxide Thin Films. https://doi.org/10.1371/journal.pone.0141180
  49. Tan, H. J., Zainal, Z., Talib, Z. A., Lim, H. N., Shafie, S., Tan, S. T., … Bahrudin, N. N. (2021). Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode. Ceramics International, 47(10), 14194–14207. https://doi.org/10.1016/J.CERAMINT.2021.02.005
  50. Tonny, K. N., Rafique, R., Sharmin, A., Bashar, M. S., & Mahmood, Z. H. (2018). Electrical, optical and structural properties of transparent conducting Al doped ZnO (AZO) deposited by sol-gel spin coating. AIP Advances, 8(6). https://doi.org/10.1063/1.5023020
  51. Uvarov, V., & Popov, I. (2007). Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Materials Characterization, 58(10), 883–891. https://doi.org/10.1016/j.matchar.2013.09.002
  52. Uvarov, Vladimir, & Popov, I. (2013). Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Materials Characterization, 85, 111–123. https://doi.org/10.1016/j.matchar.2013.09.002
  53. Wahab, Z. A., Jalaludin, N. A., Nor, M. K., Mustafa, A. N. M., Shah, A. S. M., Salehuddin, F., & Arith, F. (2024). Insights of MoO3 HTL in Perovskite Solar Cells from a Simulation Perspective. International Journal of Nanoelectronics and Materials (IJNeaM) , 17, 31–38. https://doi.org/10.58915/IJNEAM.V17IDECEMBER.1604
  54. Zheng, X., Gao, F., Ji, F., Wu, H., Zhang, J., Hu, X., & Xiang, Y. (2016). Cu-doped PbS thin films with low resistivity prepared via chemical bath deposition. Materials Letters, 167, 128–130. https://doi.org/10.1016/J.MATLET.2015.12.077
  55. Zhu, Y. ZnO nanoparticles as a luminescent down-shifting layer for solar cells. SPIE. https://doi.org/10.1117/2.1201212.004585

Last update:

No citation recorded.

Last update: 2025-05-24 02:41:20

No citation recorded.