skip to main content

Natural pigment-based dye-sensitized solar cells utilizing Caulerpa racemose and Gymnogongrus flabelliformis as photosensitizers

1Natural Science Education, Mathematics and Natural Science Education Faculty, Indonesia University of Education, Indonesia

2Chemistry Education Study Program, Faculty of Education and Teacher Training, Pattimura University, Indonesia

3Center of Excellence Applied Physics and Chemistry, Nano Center Indonesia, Indonesia

4 Solar Energy Material Laboratory, Mathematics and Natural Science Education Faculty, Indonesia University of Education, Indonesia

View all affiliations
Received: 20 Jan 2025; Revised: 17 Mar 2025; Accepted: 16 Apr 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This research examines natural dyes' chemical and physical characteristics for potential use in dye-sensitized solar cells (DSSCs). Chlorophyll pigments were extracted from two macroalgae species, Caulerpa racemosa and Gymnogongrus flabelliformis, and analyzed using absorbance spectroscopy, band gap energy calculations, and dye-sensitized solar cell performance evaluation. Fourier Transform Infrared (FTIR) characterisation was used to identify the pigments contained in the dye. The absorbance spectra of chlorophyll pigments extracted from both macroalgae species showed broad peaks at 400–800 nm wavelengths, with Gymnogongrus flabelliformis showing the highest absorbance peak at 403 nm. The redox potential analysis for both macroalgae species showed energy gaps (HOMO/LUMO) of 1.3 eV, 1.4 eV, 2.3 eV, and 2.4 eV, respectively, indicating that these natural dyes are suitable for use in DSSC applications. DSSC devices were fabricated using components such as liquid electrolyte, mesoporous titanium dioxide (TiO₂) photoelectrode, reduced graphene oxide (rGO) as counter electrode, and ITO glass as conductive substrate. Meanwhile, to evaluate how well the photovoltaic system worked, we looked at short-circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), and overall photoelectric conversion efficiency (η). The results showed that the highest performance for Gymnogongrus flabelliformis was Jsc 0.041 mA/cm², Voc 0.28 V, FF 0.239, and η 0.020%, while the highest performance of Caulerpa racemosa was Jsc 0.023 mA/cm², Voc 0.46 V, FF 0.244, and η 0.019%. These findings indicate the potential for using and developing natural dyes derived from these two macroalgae species in DSSC technology. This research offers insight into the feasibility of marine-derived pigments as a sustainable and environmentally friendly alternative for photovoltaic applications.

Fulltext View|Download
Keywords: DSSC; natural pigment; Caulerpa racemose; Gymnogongrus flabelliformis; Photosensitizers
Funding: LPDP Scholarship of Ministry of Finance RI

Article Metrics:

  1. Adedokun, O., Sanusi, Y. K., & Awodugba, A. O. (2018). Solvent dependent natural dye extraction and its sensitization effect for dye sensitized solar cells. Optik, 174, 497-507. https://doi.org/10.1016/j.ijleo.2018.06.064
  2. Calogero, G., Citro, I., Di Marco, G., Minicante, S. A., Morabito, M., & Genovese, G. (2014). Brown seaweed pigment as a dye source for photoelectrochemical solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 702-706. https://doi.org/10.1016/j.saa.2013.09.019
  3. Chang, H., Kao, M. J., Chen, T. L., Chen, C. H., Cho, K. C., & Lai, X. R. (2013). Characterization of natural dye extracted from wormwood and purple cabbage for dye‐sensitized solar cells. International Journal of Photoenergy, 2013(1), 159502. https://doi.org/10.1155/2013/159502
  4. Chatterjee, A., Kathirvel, A., Manivasagam, T. G., & Batabyal, S. K. (2024). Sustainable power generation from live freshwater photosynthetic filamentous macroalgae Pithophora. Journal of Science: Advanced Materials and Devices, 9(2), 100674. https://doi.org/10.1016/j.jsamd.2024.100674
  5. Chen, J. K., Wang, M.-Y., Chen, Y.-R., & Chen, Y.-s. (2012). Exploring knowledge flows of network on patent of dye sensitized solar cell. Paper presented at the 2012 Proceedings of PICMET'12: Technology Management for Emerging Technologies
  6. Cheng, P., Yang, L., Liu, Y., Liu, J., & Fan, Y. (2023). Promotion of sugar extraction from sewage sludge by microwave combined with thermal-alkaline pretreatment. Water, 15(7), 1291. https://doi.org/10.3390/w15071291
  7. Ciani, L., Catelani, M., Carnevale, E. A., Donati, L., & Bruzzi, M. (2014). Evaluation of the aging process of dye-sensitized solar cells under different stress conditions. IEEE Transactions on Instrumentation and Measurement, 64(5), 1179-1187. https://doi.org/10.1109/TIM.2014.2381352
  8. Cui, Y., Xu, Y., Yao, H., Bi, P., Hong, L., Zhang, J., . . . Ren, J. (2021). Single‐junction organic photovoltaic cell with 19% efficiency. Advanced Materials, 33(41), 2102420. https://doi.org/10.1002/adma.202102420
  9. Davies, K. (2004). Plant Pigments and Their Manipulation; Annual Plant Reviews (Vol. 14): Blackwell Publishing Ltd. https://doi.org/ 10.1093/aob/mci287
  10. Dedeepya, G., Shanmugan, S., Sundari, G. S., Devi, N. L., Meenachi, M., Kiran, M. G., & Selvaraju, P. (2022). Dyes prepared from leaf extract of siriyanangai (Andrographis Paniculata) with the effect of TiO2 based DSSCs. Materials Today: Proceedings, 66, 3644-3650. https://doi.org/10.1016/j.matpr.2022.07.188
  11. Dumbrava, A., Lungu, J., & Ion, A. (2016). Green seaweeds extract as co-sensitizer for dye sensitized solar cells. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 17(1), 13. https://pubs.ub.ro/dwnl.php?id=CSCC6201601V01S01A0002
  12. Endo, T., Reddy, L., Nishikawa, H., Kaneko, S., Nakamura, Y., & Endo, K. (2017). Composite engineering–direct bonding of plastic PET films by plasma irradiation. Procedia Engineering, 171, 88-103. https://doi.org/10.1016/j.proeng.2017.01.315
  13. Erdogdu, M., Atilgan, A., Erdogdu, Y., & Yildiz, A. (2024). Flavonoid from Hedera helix fruits: A promising new natural sensitizer for DSSCs. Journal of Photochemistry and Photobiology A: Chemistry, 448, 115288. https://doi.org/10.1016/j.jphotochem.2023.115288
  14. Ferreira, F., Babu, R. S., de Barros, A., Raja, S., da Conceição, L., & Mattoso, L. (2020). Photoelectric performance evaluation of DSSCs using the dye extracted from different color petals of Leucanthemum vulgare flowers as novel sensitizers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 233, 118198. https://doi.org/10.1016/j.saa.2020.118198
  15. Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848-5860. https://doi.org/10.1016/j.rser.2012.04.044
  16. Grätzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), 338-344. https://doi.org/10.1038/35104607
  17. Greco, I., Varon, C., & Iorio, C. S. (2022). Synthesis and Characterization of a new Alginate-Gelatine Aerogel for Tissue Engineering. Paper presented at the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). https://doi.org/10.1109/EMBC48229.2022.9871508
  18. Grimm, B., Porra, R. J., Rüdiger, W., & Scheer, H. (2006). Chlorophylls and Bacteriochlorophylls (Advances in Photosynthesis and Respiration). Advances in Photosynthesis and Respiration. https://doi.org/10.1007/1-4020-4516-6
  19. Han, L., Koide, N., Chiba, Y., & Mitate, T. (2004). Modeling of an equivalent circuit for dye-sensitized solar cells. Applied Physics Letters, 84(13), 2433-2435. https://doi.org/10.1063/1.1690495
  20. Hao, S., Wu, J., Huang, Y., & Lin, J. (2006). Natural dyes as photosensitizers for dye-sensitized solar cell. Solar Energy, 80(2), 209-214. https://doi.org/10.1016/j.solener.2005.05.009
  21. Iqbal, M. Z., Ali, S. R., & Khan, S. (2019). Progress in dye sensitized solar cell by incorporating natural photosensitizers. Solar Energy, 181, 490-509. https://doi.org/10.1016/j.solener.2019.02.023
  22. Kao, M., Chen, H., Young, S., Kung, C., & Lin, C. (2009). The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells. Thin solid films, 517(17), 5096-5099. https://doi.org/10.1016/j.tsf.2009.03.102
  23. Katritzky, A. R., Fara, D. C., Yang, H., Tämm, K., Tamm, T., & Karelson, M. (2004). Quantitative measures of solvent polarity. Chemical reviews, 104(1), 175-198. https://doi.org/10.1021/cr020750m
  24. Koyama, Y., Miki, T., Wang, X.-F., & Nagae, H. (2009). Dye-sensitized solar cells based on the principles and materials of photosynthesis: mechanisms of suppression and enhancement of photocurrent and conversion efficiency. International journal of molecular sciences, 10(11), 4575-4622. https://doi.org/10.3390/ijms10114575
  25. Kumar, A., & Kandpal, T. C. (2007). Renewable energy technologies for irrigation water pumping in India: A preliminary attempt towards potential estimation. Energy, 32(5), 861-870. https://doi.org/10.1016/j.energy.2006.05.004
  26. Kumar, S. G., & Rao, K. K. (2017). Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Applied Surface Science, 391, 124-148. https://doi.org/10.1016/j.apsusc.2016.07.081
  27. Kumara, N., Lim, A., Lim, C. M., Petra, M. I., & Ekanayake, P. (2017). Recent progress and utilization of natural pigments in dye sensitized solar cells: A review. Renewable and Sustainable Energy Reviews, 78, 301-317. https://doi.org/10.1016/j.rser.2017.04.075
  28. Liline, S., Rumahlatu, D., Zubaidah, S., Salmanu, S., & Sangur, K. (2024). Influence of physicochemical environmental factors on morphometric characteristics of macroalgae from Ambon Island, Indonesia. Biodiversitas Journal of Biological Diversity, 25(4). https://doi.org/10.13057/biodiv/d250412
  29. Lim, A., Haji Manaf, N., Tennakoon, K., Chandrakanthi, R., Lim, L. B. L., Bandara, J., & Ekanayake, P. (2015). Higher performance of DSSC with dyes from Cladophora sp. as mixed cosensitizer through synergistic effect. Journal of Biophysics, 2015. https://doi.org/10.1155/2015/510467
  30. Mandal, R., & Dutta, G. (2020). From photosynthesis to biosensing: Chlorophyll proves to be a versatile molecule. Sensors International, 1, 100058. https://doi.org/10.1016/j.sintl.2020.100058
  31. Minicante, S. A., Ambrosi, E., Back, M., Barichello, J., Cattaruzza, E., Gonella, F., . . . Trave, E. (2016). Development of an eco-protocol for seaweed chlorophylls extraction and possible applications in dye sensitized solar cells. Journal of Physics D: Applied Physics, 49(29), 295601. https://doi.org/10.1088/0022-3727/49/29/295601
  32. Mishra, A., Fischer, M. K., & Bäuerle, P. (2009). Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition, 48(14), 2474-2499. https://doi.org/10.1002/anie.200804709
  33. Namie, M., Kim, J.-H., & Yonezawa, S. (2023). Enhanced Dyeing of Polypropylene Using Fluorine–Oxygen Gas Mixtures. Colorants, 2(3), 552-564. https://doi.org/10.3390/colorants2030027
  34. Olea, A., Ponce, G., & Sebastian, P. (1999). Electron transfer via organic dyes for solar conversion. Solar energy materials and solar cells, 59(1-2), 137-143. https://doi.org/10.1016/S0927-0248(99)00038-0
  35. Orona-Navar, A., Aguilar-Hernández, I., Nigam, K., Cerdán-Pasarán, A., & Ornelas-Soto, N. (2021). Alternative sources of natural pigments for dye-sensitized solar cells: Algae, cyanobacteria, bacteria, archaea and fungi. Journal of Biotechnology, 332, 29-53. https://doi.org/10.1016/j.jbiotec.2021.03.013
  36. Pal, K., & Rahaman, C. H. (2015). Phytochemical and antioxidant studies of Justicia gendarussa Burm. F. an ethnomedicinal plant. Int. J. Pharm. Sci, 6, 3454-3462. https://doi.org/10.13040/IJPSR.0975-8232.6(8).3454-62
  37. Prabavathy, N., Shalini, S., Balasundaraprabhu, R., Velauthapillai, D., Prasanna, S., & Muthukumarasamy, N. (2017). Enhancement in the photostability of natural dyes for dye‐sensitized solar cell (DSSC) applications: a review. International Journal of Energy Research, 41(10), 1372-1396. https://doi.org/10.1002/er.3703
  38. Prima, E. C., Nugroho, H. S., Refantero, G., Panatarani, C., & Yuliarto, B. (2020). Performance of the dye-sensitized quasi-solid state solar cell with combined anthocyanin-ruthenium photosensitizer. RSC advances, 10(60), 36873-36886. https://doi.org/10.1039/D0RA06550A
  39. Prima, E. C., Rusliani, P. F., Suhendi, E., & Yuliarto, B. (2024). Performance of dye-sensitized solar cells with mixed three natural pigments and reduced graphene oxide as a counter electrode. Results in Optics, 14, 100592. https://doi.org/10.1016/j.rio.2023.100592
  40. Prima, E. C., Yuliarto, B., Suendo, V., & Suyatman. (2014). Improving photochemical properties of Ipomea pescaprae, Imperata cylindrica (L.) Beauv, and Paspalum conjugatum Berg as photosensitizers for dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 25, 4603-4611. https://doi.org/10.1007/s10854-014-2210-x
  41. Richhariya, G., Kumar, A., Tekasakul, P., & Gupta, B. (2017). Natural dyes for dye sensitized solar cell: A review. Renewable and Sustainable Energy Reviews, 69, 705-718. https://doi.org/10.1016/j.rser.2016.11.198
  42. Ruba, N., Prakash, P., Sowmya, S., Janarthana, B., Prabu, A. N., Chandrasekaran, J., . . . Yahia, I. (2021). Recent advancement in photo-anode, dye and counter cathode in dye-sensitized solar cell: a review. Journal of Inorganic and Organometallic Polymers and Materials, 31, 1894-1901. https://doi.org/10.1007/s10904-020-01854-6
  43. Shafiee, A., Salleh, M. M., & Yahaya, M. (2011). Determination of HOMO and LUMO of [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester and poly (3-octyl-thiophene-2, 5-diyl) through voltametry characterization. Sains Malaysiana, 40(2), 173-176. https://doi.org/10.4028/www.scientific.net/SSP.307.207
  44. Tanaka, R., & Tanaka, A. (2011). Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(8), 968-976. https://doi.org/10.1016/j.bbabio.2011.01.002
  45. Trihutomo, P., Soeparman, S., Widhiyanuriyawan, D., & Yuliati, L. (2019). Performance Improvement of Dye‐Sensitized Solar Cell‐(DSSC‐) Based Natural Dyes by Clathrin Protein. International Journal of Photoenergy, 2019(1), 4384728. https://doi.org/10.1155/2019/4384728
  46. Ubani, C., Ibrahim, M., Teridi, M., Sopian, K., Ali, J., & Chaudhary, K. (2016). Application of graphene in dye and quantum dots sensitized solar cell. Solar Energy, 137, 531-550. https://doi.org/10.1016/j.solener.2016.08.055
  47. Venugopal, G., Krishnamoorthy, K., & Kim, S.-J. (2013). An investigation on high-temperature electrical transport properties of graphene-oxide nano-thinfilms. Applied surface science, 280, 903-908. https://doi.org/10.1016/j.apsusc.2013.05.089
  48. Wang, X.-F., Zhan, C.-H., Maoka, T., Wada, Y., & Koyama, Y. (2007). Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c1′ and c2′ from Undaria pinnatifida (Wakame). Chemical physics letters, 447(1-3), 79-85. https://doi.org/10.1016/j.cplett.2007.08.097
  49. Wei, Q. S., Aizat, M. F., Diyanti, A., Ishak, W. M. F., Salleh, H., Wong, K. N. S. W. S., & Adli, H. K. (2019). Kappaphycus alvarezii sp., Sargassum polycystum sp. and Manihot esculenta sp. as photo-sensitizers in dye-sensitized solar cells. Paper presented at the AIP Conference Proceedings. https://doi.org/10.1063/1.5089327
  50. Wu, M., & Ma, T. (2014). Recent progress of counter electrode catalysts in dye-sensitized solar cells. The Journal of Physical Chemistry C, 118(30), 16727-16742. https://doi.org/10.1021/jp412713h
  51. Zhu, Y., Guo, H., Zheng, H., Lin, Y.-n., Gao, C., Han, Q., & Wu, M. (2016). Choose a reasonable counter electrode catalyst toward a fixed redox couple in dye-sensitized solar cells. Nano Energy, 21, 1-18. https://doi.org/10.1016/j.nanoen.2016.01.001

Last update:

No citation recorded.

Last update: 2025-05-24 06:00:40

No citation recorded.