skip to main content

Using hydrogen as potential fuel for internal combustion engines: A comprehensive assessment

1Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam

2Faculty of Engineering, Dong Nai Technology University, Bien Hoa City, Viet Nam

3Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

4 Danang University of Science and Technology, The University of Danang, Dannang, Viet Nam

View all affiliations
Received: 15 Jul 2024; Revised: 13 Nov 2024; Accepted: 1 Dec 2024; Available online: 16 Dec 2024; Published: 1 Jan 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This comprehensive review explores the feasibility and potential of using hydrogen gas as a fuel for internal combustion engines, a topic of growing importance in the context of global efforts to reduce greenhouse gas emissions and transition towards sustainable energy sources. Hydrogen, known for its high energy content and clean combustion properties, presents a promising alternative to traditional fossil fuels. This paper examines the chemical properties of hydrogen and its benefits over conventional fuels, particularly focusing on the technological advancements and modifications required for compression ignition and spark ignition engines to efficiently utilize hydrogen. The review delves into the necessary engine design modification, fuel injection systems, combustion characteristics, and emission control technologies specific to both compression ignition and spark ignition engines. Furthermore, it addresses the environmental impacts, including reductions in greenhouse gases and other pollutants, and evaluates the economic implications, such as production costs and feasibility compared to other energy solutions. Key challenges associated with the storage, distribution, and safety of hydrogen are discussed, along with potential solutions and innovations currently under investigation. This paper aims to provide a thorough understanding of the current state of hydrogen as a promising fuel for internal combustion engines, guiding future research and development in this vital field.

Fulltext View|Download
Keywords: Emission reduction; Internal combustion engines; Alternative fuel; Hydrogen; Sustainability; Net-zero goal

Article Metrics:

  1. Abe, J.O., Popoola, A.P.I., Ajenifuja, E., Popoola, O.M., 2019. Hydrogen energy, economy and storage: Review and recommendation. Int. J. Hydrogen Energy 44, 15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068
  2. Abe, John O, Popoola, A.P.I., Ajenifuja, E., Popoola, O.M., 2019. Hydrogen energy, economy and storage: review and recommendation. Int. J. Hydrogen Energy 44, 15072–15086
  3. Achmad, A., Areni, I.S., Palantei, E., Achmad, A.D., Muliadi, -, 2022. IoT Network of Sensor Array for Intrusion Detection and Diagnosis of Electrical Systems. Int. J. Adv. Sci. Eng. Inf. Technol. 12, 446–452. https://doi.org/10.18517/ijaseit.12.2.13656
  4. Afandi, A., Birowosuto, M.D., Sembiring, K.C., 2022. Energy-yield Assessment Based on the Orientations and the Inclinations of the Solar Photovoltaic Rooftop Mounted in Jakarta, Indonesia. Int. J. Adv. Sci. Eng. Inf. Technol. 12, 470–476. https://doi.org/10.18517/ijaseit.12.2.14812
  5. Ahmed Bhutto, I., Khan, I., Furqan, M., Alzahrani, A.H., Bhutto, A.A., Singh, A., 2024. Wall film cooling mechanism in liquid fuel combustion chamber containing gaseous hydrogen. Int. J. Hydrogen Energy 52, 246–255. https://doi.org/10.1016/j.ijhydene.2023.06.332
  6. Ahmed, S.A., Zhou, S., Tsegay, S., Ahmad, N., Zhu, Y., 2020. Effects of hydrogen-enriched biogas on combustion and emission of a dual-fuel diesel engine. Energy Sources, Part A Recover. Util. Environ. Eff. 1–16
  7. Al-Baghdadi, M.A.R.S., Ahmed, S.S., Ghyadh, N.A., 2023. Three-dimensional CFD-solid mechanics analysis of the hydrogen internal combustion engine piston subjected to thermomechanical loads. Int. J. Renew. Energy Dev. 12(3). htpps://doi.org/10.14710/ijred.2023.52496
  8. Al-Mahgari, A.M., Al-Nimr, M.A., Khashan, S.A., 2023. Pressurized green hydrogen from water electrolysis: Compression before or after electrolysis? A comparison among different configurations. J. Energy Storage 73, 109251. https://doi.org/10.1016/j.est.2023.109251
  9. Algayyim, S.J.M., Saleh, K., Wandel, A.P., Fattah, I.M.R., Yusaf, T., Alrazen, H.A., 2024. Influence of natural gas and hydrogen properties on internal combustion engine performance, combustion, and emissions: A review. Fuel 362, 130844. https://doi.org/10.1016/j.fuel.2023.130844
  10. Almansoori, A., Shah, N., 2012. Design and operation of a stochastic hydrogen supply chain network under demand uncertainty. Int. J. Hydrogen Energy 37, 3965–3977. https://doi.org/10.1016/j.ijhydene.2011.11.091
  11. Amponsah, N.Y., Troldborg, M., Kington, B., Aalders, I., Hough, R.L., 2014. Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations. Renew. Sustain. Energy Rev. 39, 461–475. https://doi.org/10.1016/j.rser.2014.07.087
  12. Anand, T., Debbarma, S., 2024. Experimental Analysis of Hydrogen Enrichment in Waste Plastic Oil Blends for Dual-Fuel Common Rail Direct Injection Diesel Engines. J. Energy Resour. Technol. 146. https://doi.org/10.1115/1.4063665
  13. Arsad, A.Z., Hannan, M.A., Al-Shetwi, A.Q., Begum, R.A., Hossain, M.J., Ker, P.J., Mahlia, T.I., 2023. Hydrogen electrolyser technologies and their modelling for sustainable energy production: A comprehensive review and suggestions. Int. J. Hydrogen Energy 48, 27841–27871. https://doi.org/10.1016/j.ijhydene.2023.04.014
  14. Ayad, S.M.M.E., Belchior, C.R.P., Sodré, J.R., 2024. Hydrogen addition to ethanol-fuelled engine in lean operation to improve fuel conversion efficiency and emissions. Int. J. Hydrogen Energy 49, 744–752. https://doi.org/10.1016/j.ijhydene.2023.09.048
  15. Bakar, R.A., Widudo, Kadirgama, K., Ramasamy, D., Yusaf, T., Kamarulzaman, M.K., Sivaraos, Aslfattahi, N., Samylingam, L., Alwayzy, S.H., 2022. Experimental analysis on the performance, combustion/emission characteristics of a DI diesel engine using hydrogen in dual fuel mode. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.04.129
  16. Balitskii, A., Kindrachuk, M., Volchenko, D., Abramek, K.F., Balitskii, O., Skrypnyk, V., Zhuravlev, D., Bekish, I., Ostashuk, M., Kolesnikov, V., 2021. Hydrogen Containing Nanofluids in the Spark Engine’s Cylinder Head Cooling System. Energies 15, 59. https://doi.org/10.3390/en15010059
  17. Bawan, E.K., Al Hasibi, R.A., 2022. Contributing to Low Emission Development through Regional Energy Planning in West Papua. Int. J. Adv. Sci. Eng. Inf. Technol. 12, 2203–2210. https://doi.org/10.18517/ijaseit.12.6.14505
  18. Benim, A.C., Syed, K.J., 2015. Properties of Hydrogen-Containing Fuels, in: Flashback Mechanisms in Lean Premixed Gas Turbine Combustion. Elsevier, pp. 19–24. https://doi.org/10.1016/B978-0-12-800755-6.00003-9
  19. Bose, P.K., Banerjee, R., Deb, M., 2013. Effect of hydrogen-diesel combustion on the performance and combustion parameters of a dual fuelled diesel engine. Int. J. Energy Environ. 4
  20. Brown, T., Schell, L.S., Stephens-Romero, S., Samuelsen, S., 2013. Economic analysis of near-term California hydrogen infrastructure. Int. J. Hydrogen Energy 38, 3846–3857. https://doi.org/10.1016/j.ijhydene.2013.01.125
  21. Bui, V.G., Bui, T.M.T., Hoang, A.T., Nižetić, S., Nguyen Thi, T.X., Vo, A.V., 2021. Hydrogen-Enriched Biogas Premixed Charge Combustion and Emissions in Direct Injection and Indirect Injection Diesel Dual Fueled Engines: A Comparative Study. J. Energy Resour. Technol. 143. https://doi.org/10.1115/1.4051574
  22. Bui, V.G., Bui, T.M.T., Nguyen, M.T., Bui, V.H., Do, P.N., Tran, N.A.H., Le, T.T., Hoang, A.T., 2024. Enhancing the performance of syngas-diesel dual-fuel engines by optimizing injection regimes: From comparative analysis to control strategy proposal. Process Saf. Environ. Prot. 186, 1034–1052. https://doi.org/10.1016/j.psep.2024.04.042
  23. Bui, V.G., Bui, T.M.T., Tran, V.N., Huang, Z., Hoang, A.T., Tarelko, W., Bui, V.H., Pham, X.M., Nguyen, P.Q.P., 2023. Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters. Int. J. Hydrogen Energy 48, 6722–6737. https://doi.org/10.1016/j.ijhydene.2022.09.133
  24. Bui, V.G., Tu Bui, T.M., Ong, H.C., Nižetić, S., Bui, V.H., Xuan Nguyen, T.T., Atabani, A.E., Štěpanec, L., Phu Pham, L.H., Hoang, A.T., 2022. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy 252, 124052. https://doi.org/10.1016/j.energy.2022.124052
  25. Bundele, H., Kurien, C., Varma, P.S., Mittal, M., 2022. Experimental and computational study on the enhancement of engine characteristics by hydrogen enrichment in a biogas fuelled spark ignition engine. Int. J. Hydrogen Energy 47, 30671–30686. https://doi.org/10.1016/J.IJHYDENE.2022.07.029
  26. Campari, A., Ustolin, F., Alvaro, A., Paltrinieri, N., 2023. A review on hydrogen embrittlement and risk-based inspection of hydrogen technologies. Int. J. Hydrogen Energy 48, 35316–35346. https://doi.org/10.1016/j.ijhydene.2023.05.293
  27. Cao, W., Geng, P., Xu, X., Tarasiuk, T., 2023. Energy Management Strategy Considering Energy Storage System Degradation for Hydrogen Fuel Cell Ship. Polish Marit. Res. 30, 95–104. https://doi.org/10.2478/pomr-2023-0025
  28. Chaurasiya, P.K., Rajak, U., Veza, I., Verma, T.N., Ağbulut, Ü., 2022. Influence of injection timing on performance, combustion and emission characteristics of a diesel engine running on hydrogen-diethyl ether, n-butanol and biodiesel blends. Int. J. Hydrogen Energy 47, 18182–18193
  29. Chen, W.-H., Biswas, P.P., Ong, H.C., Hoang, A.T., Nguyen, T.-B., Dong, C.-D., 2023. A critical and systematic review of sustainable hydrogen production from ethanol/bioethanol: Steam reforming, partial oxidation, and autothermal reforming. Fuel 333, 126526. https://doi.org/10.1016/j.fuel.2022.126526
  30. Cherwoo, L., Gupta, I., Flora, G., Verma, R., Kapil, M., Arya, S.K., Ravindran, B., Khoo, K.S., Bhatia, S.K., Chang, S.W., Ngamcharussrivichai, C., Ashokkumar, V., 2023. Biofuels an alternative to traditional fossil fuels: A comprehensive review. Sustain. Energy Technol. Assessments 60, 103503. https://doi.org/10.1016/j.seta.2023.103503
  31. Chintala, V., Subramanian, K.A., 2017. A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode. Renew. Sustain. Energy Rev. 70, 472–491. https://doi.org/10.1016/j.rser.2016.11.247
  32. Chitragar, P.R., Shivaprasad, K. V, Kumar, G.N., 2017. Experimental Analysis of Four Cylinder 4-Stroke Gasoline Engine Using Hydrogen Fractions for Performance and Emission Parameters. https://doi.org/10.4271/2017-26-0063
  33. Cong, X., Ji, C., Wang, S., 2021. Investigation into engine performance of a hydrogen-dimethyl ether spark-ignition engine under various dimethyl ether fractions. Fuel 306, 121429. https://doi.org/10.1016/j.fuel.2021.121429
  34. Dai, P., Chen, Z., Gan, X., Liberman, M.A., 2021. Autoignition and detonation development from a hot spot inside a closed chamber: Effects of end wall reflection. Proc. Combust. Inst. 38, 5905–5913. https://doi.org/10.1016/j.proci.2020.09.025
  35. De Simio, L., Iannaccone, S., Guido, C., Napolitano, P., Maiello, A., 2024. Natural Gas/Hydrogen blends for heavy-duty spark ignition engines: Performance and emissions analysis. Int. J. Hydrogen Energy 50, 743–757. https://doi.org/10.1016/j.ijhydene.2023.06.194
  36. Deb, M., Sastry, G.R.K., Bose, P.K., Banerjee, R., 2015. An experimental study on combustion, performance and emission analysis of a single cylinder, 4-stroke DI-diesel engine using hydrogen in dual fuel mode of operation. Int. J. Hydrogen Energy 40, 8586–8598. https://doi.org/10.1016/j.ijhydene.2015.04.125
  37. Deheri, C., Acharya, S.K., Thatoi, D.N., Mohanty, A.P., 2020. A review on performance of biogas and hydrogen on diesel engine in dual fuel mode. Fuel 260, 116337. https://doi.org/10.1016/j.fuel.2019.116337
  38. Demirci, A., Koten, H., Gumus, M., 2018. The effects of small amount of hydrogen addition on performance and emissions of a direct injection compression ignition engine. Therm. Sci. 22, 1395–1404. https://doi.org/10.2298/TSCI170802004D
  39. Dimitriou, P., Tsujimura, T., 2017. A review of hydrogen as a compression ignition engine fuel. Int. J. Hydrogen Energy 42, 24470–24486. https://doi.org/10.1016/j.ijhydene.2017.07.232
  40. Dimos, D., Graaf, S. de, 2024. Overview of safety challenges associated with integration of hydrogen-based propulsion systems for climate neutral aviation. J. Phys. Conf. Ser. 2716, 012001. https://doi.org/10.1088/1742-6596/2716/1/012001
  41. Dong, V.H., Sharma, P., 2023. Optimized conversion of waste vegetable oil to biofuel with Meta heuristic methods and design of experiments. J. Emerg. Sci. Eng. 1, 22–28. https://doi.org/10.61435/jese.2023.4
  42. Du, Y., Yu, X., Liu, L., Li, R., Zuo, X., Sun, Y., 2017. Effect of addition of hydrogen and exhaust gas recirculation on characteristics of hydrogen gasoline engine. Int. J. Hydrogen Energy 42, 8288–8298. https://doi.org/10.1016/j.ijhydene.2017.02.197
  43. Duan, X., Xu, Lubin, Xu, Linxun, Jiang, P., Gan, T., Liu, H., Ye, S., Sun, Z., 2023. Performance analysis and comparison of the spark ignition engine fuelled with industrial by-product hydrogen and gasoline. J. Clean. Prod. 424, 138899. https://doi.org/10.1016/j.jclepro.2023.138899
  44. Dwivedi, S.K., Vishwakarma, M., 2018. Hydrogen embrittlement in different materials: A review. Int. J. Hydrogen Energy 43, 21603–21616. https://doi.org/10.1016/j.ijhydene.2018.09.201
  45. El-Adawy, M., Nemitallah, M.A., Abdelhafez, A., 2024. Towards sustainable hydrogen and ammonia internal combustion engines: Challenges and opportunities. Fuel 364, 131090. https://doi.org/10.1016/j.fuel.2024.131090
  46. El-Shafie, M., 2023. Hydrogen production by water electrolysis technologies: A review. Results Eng. 20, 101426. https://doi.org/10.1016/j.rineng.2023.101426
  47. Elsemary, I.M.M., Attia, A.A.A., Elnagar, K.H., Elsaleh, M.S., 2017. Spark timing effect on performance of gasoline engine fueled with mixture of hydrogen–gasoline. Int. J. Hydrogen Energy 42, 30813–30820. https://doi.org/10.1016/j.ijhydene.2017.10.125
  48. Estrada, L., Moreno, E., Gonzalez-Quiroga, A., Bula, A., Duarte-Forero, J., 2022. Experimental assessment of performance and emissions for hydrogen-diesel dual fuel operation in a low displacement compression ignition engine. Heliyon 8, e09285. https://doi.org/10.1016/j.heliyon.2022.e09285
  49. Falfari, S., Cazzoli, G., Mariani, V., Bianchi, G., 2023. Hydrogen Application as a Fuel in Internal Combustion Engines. Energies 16, 2545. https://doi.org/10.3390/en16062545
  50. Faye, O., Szpunar, J., Eduok, U., 2022. A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrogen Energy 47, 13771–13802. https://doi.org/10.1016/j.ijhydene.2022.02.112
  51. Fransiscus, Y., Simangunsong, T.L., 2021. Anaerobic Digestion of Industrial Tempeh Wastewater with Sludge from Cow Manure Biogas Digester as Inoculum: Effect of F/M Ratio on the Methane Production. Int. J. Adv. Sci. Eng. Inf. Technol. 11, 1007–1013. https://doi.org/10.18517/ijaseit.11.3.11846
  52. Frasci, E., Sementa, P., Arsie, I., Jannelli, E., Vaglieco, B.M., 2023. Experimental and numerical investigation of the impact of the pure hydrogen fueling on fuel consumption and NO x emissions in a small DI SI engine. Int. J. Engine Res. 24, 3574–3587. https://doi.org/10.1177/14680874231162141
  53. Frigo, S., Gentili, R., 2013. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen. Int. J. Hydrogen Energy 38, 1607–1615. https://doi.org/10.1016/j.ijhydene.2012.10.114
  54. Gandhi, K., Apostoleris, H., Sgouridis, S., 2022. Catching the hydrogen train: economics-driven green hydrogen adoption potential in the United Arab Emirates. Int. J. Hydrogen Energy 47, 22285–22301. https://doi.org/10.1016/j.ijhydene.2022.05.055
  55. Gangadhari, R.K., Karadayi‐Usta, S., Lim, W.M., 2023. Breaking barriers toward a net‐zero economy. Nat. Resour. Forum. https://doi.org/10.1111/1477-8947.12378
  56. Gao, J., Wang, X., Song, P., Tian, G., Ma, C., 2022. Review of the backfire occurrences and control strategies for port hydrogen injection internal combustion engines. Fuel 307, 121553. https://doi.org/10.1016/j.fuel.2021.121553
  57. Ghaffari-Tabrizi, F., Haemisch, J., Lindner, D., 2022. Reducing Hydrogen Boil-Off Losses during Fuelling by Pre-Cooling Cryogenic Tank. Hydrogen 3, 255–269. https://doi.org/10.3390/hydrogen3020015
  58. Gholami, A., Jazayeri, S.A., Esmaili, Q., 2022. A detail performance and CO2 emission analysis of a very large crude carrier propulsion system with the main engine running on dual fuel mode using hydrogen/diesel versus natural gas/diesel and conventional diesel engines. Process Saf. Environ. Prot. 163, 621–635. https://doi.org/10.1016/j.psep.2022.05.069
  59. Giacomazzi, E., Troiani, G., Di Nardo, A., Calchetti, G., Cecere, D., Messina, G., Carpenella, S., 2023. Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition. Energies 16, 7174. https://doi.org/10.3390/en16207174
  60. Gültekin, N., Ciniviz, M., 2023. Examination of the effect of combustion chamber geometry and mixing ratio on engine performance and emissions in a hydrogen-diesel dual-fuel compression-ignition engine. Int. J. Hydrogen Energy 48, 2801–2820. https://doi.org/10.1016/j.ijhydene.2022.10.155
  61. Guo, L., Su, J., Wang, Z., Shi, J., Guan, X., Cao, W., Ou, Z., 2024. Hydrogen safety: An obstacle that must be overcome on the road towards future hydrogen economy. Int. J. Hydrogen Energy 51, 1055–1078. https://doi.org/10.1016/j.ijhydene.2023.08.248
  62. Habib, M.A., Abdulrahman, G.A.Q., Alquaity, A.B.S., Qasem, N.A.A., 2024. Hydrogen combustion, production, and applications: A review. Alexandria Eng. J. 100, 182–207. https://doi.org/10.1016/j.aej.2024.05.030
  63. Hadiyanto, H., Octafalahanda, F.M., Nabila, J., Jati, A.K., Christwardana, M., Kusmiyati, K., Khoironi, A., 2023. Preliminary Observation of Biogas Production from a Mixture of Cattle Manure and Bagasse Residue in Different Composition Variations. Int. J. Renew. Energy Dev. 12, 390–395. https://doi.org/10.14710/ijred.2023.52446
  64. Hamzehloo, A., Aleiferis, P., 2013. Computational Study of Hydrogen Direct Injection for Internal Combustion Engines. https://doi.org/10.4271/2013-01-2524
  65. Han, T., Paramasivam, P., Dong, V.H., Cuong, H., Chuan, D., 2024. Harnessing a Better Future : Exploring AI and ML Applications in Renewable Energy. JOIV Int. J. Informatics Vis. 8
  66. Hansen, J., Sato, M., 2016. Regional climate change and national responsibilities. Environ. Res. Lett. 11, 034009. https://doi.org/10.1088/1748-9326/11/3/034009
  67. Hassoine, M.A., Lahlou, F., Addaim, A., Madi, A.A., 2022. Improved Evaluation of The Wind Power Potential of a Large Offshore Wind Farm Using Four Analytical Wake Models. Int. J. Renew. Energy Dev. 11, 35–48. https://doi.org/10.14710/ijred.2022.38263
  68. Helen McCay, M., 2014. Hydrogen, in: Future Energy. Elsevier, pp. 495–510. https://doi.org/10.1016/B978-0-08-099424-6.00023-5
  69. Hoang, A.T., 2021. Prediction of the density and viscosity of biodiesel and the influence of biodiesel properties on a diesel engine fuel supply system. J. Mar. Eng. Technol. 20, 299–311. https://doi.org/10.1080/20464177.2018.1532734
  70. Hoang, A.T., 2018. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl. Energy 231, 138–166. https://doi.org/10.1016/j.apenergy.2018.09.022
  71. Hoang, A.T., Foley, A.M., Nižetić, S., Huang, Z., Ong, H.C., Ölçer, A.I., Pham, V.V., Nguyen, X.P., 2022a. Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. J. Clean. Prod. 355, 131772. https://doi.org/10.1016/j.jclepro.2022.131772
  72. Hoang, A.T., Huang, Z., Nižetić, S., Pandey, A., Nguyen, X.P., Luque, R., Ong, H.C., Said, Z., Le, T.H., Pham, V.V., 2022b. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. Int. J. Hydrogen Energy 47, 4394–4425. https://doi.org/10.1016/j.ijhydene.2021.11.091
  73. Hoang, A.T., Pandey, A., Chen, W.-H., Ahmed, S.F., Nižetić, S., Ng, K.H., Said, Z., Duong, X.Q., Ağbulut, Ü., Hadiyanto, H., Nguyen, X.P., 2023a. Hydrogen production by water splitting with support of metal and carbon-based photocatalysts. ACS Sustain. Chem. Eng. https://doi.org/10.1021/acssuschemeng.2c05226
  74. Hoang, A.T., Pandey, A., Lichtfouse, E., Bui, V.G., Veza, I., Nguyen, H.L., Nguyen, X.P., 2023b. Green hydrogen economy: Prospects and policies in Vietnam. Int. J. Hydrogen Energy 48, 31049–31062. https://doi.org/10.1016/j.ijhydene.2023.05.306
  75. Hoang, A.T., Pandey, A., Martinez De Osés, F.J., Chen, W.-H., Said, Z., Ng, K.H., Ağbulut, Ü., Tarełko, W., Ölçer, A.I., Nguyen, X.P., 2023c. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renew. Sustain. Energy Rev. 188, 113790. https://doi.org/10.1016/j.rser.2023.113790
  76. Hoang, A.T., Pham, V.V., 2021. 2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines. Renew. Sustain. Energy Rev. 148, 111265. https://doi.org/10.1016/j.rser.2021.111265
  77. Hoang, A.T., Pham, V.V., 2020. A study on a solution to reduce emissions by using hydrogen as an alternative fuel for a diesel engine integrated exhaust gas recirculation, in: International Conference on Emerging Applications in Material Science and Technology: ICEAMST2020. p. 020035. https://doi.org/10.1063/5.0007492
  78. Hoang, A.T., Sandro Nižetić, Olcer, A.I., Ong, H.C., Chen, W.-H., Chong, C.T., Thomas, S., Bandh, S.A., Nguyen, X.P., 2021. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 154, 112322. https://doi.org/10.1016/j.enpol.2021.112322
  79. Hoang, A.T., Varbanov, P.S., Nižetić, S., Sirohi, R., Pandey, A., Luque, R., Ng, K.H., Pham, V.V., 2022c. Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. J. Clean. Prod. 359, 131897. https://doi.org/10.1016/j.jclepro.2022.131897
  80. Hong, W.Y., 2022. A techno-economic review on carbon capture, utilisation and storage systems for achieving a net-zero CO2 emissions future. Carbon Capture Sci. Technol. 3, 100044. https://doi.org/10.1016/j.ccst.2022.100044
  81. Hosseini, S.E., Butler, B., 2020. An overview of development and challenges in hydrogen powered vehicles. Int. J. Green Energy 17, 13–37. https://doi.org/10.1080/15435075.2019.1685999
  82. Huang, B., Hu, E., Huang, Z., Zheng, J., Liu, B., Jiang, D., 2009. Cycle-by-cycle variations in a spark ignition engine fueled with natural gas–hydrogen blends combined with EGR. Int. J. Hydrogen Energy 34, 8405–8414. https://doi.org/10.1016/j.ijhydene.2009.08.002
  83. Hughes, N., Agnolucci, P., 2012. Hydrogen Economics and Policy, in: Comprehensive Renewable Energy. Elsevier, pp. 55–85. https://doi.org/10.1016/B978-0-12-819727-1.00192-8
  84. Iacobuţă, G.I., Brandi, C., Dzebo, A., Elizalde Duron, S.D., 2022. Aligning climate and sustainable development finance through an SDG lens. The role of development assistance in implementing the Paris Agreement. Glob. Environ. Chang. 74, 102509. https://doi.org/10.1016/j.gloenvcha.2022.102509
  85. IBRD/WB, 2018. Energy Transition UN Report - Towards the achivement of SDG 7 Net-zero emissions. Irena 157–166
  86. IEA; IRENA, 2019. The energy progress report. Tracking SDG7: Executive Summary. Report 57
  87. IEA, 2022. Tracking SDG7: The Energy Progress Report, 2022
  88. Ilyushechkin, A., Schoeman, L., Carter, L., Hla, S.S., 2023. Material Challenges and Hydrogen Embrittlement Assessment for Hydrogen Utilisation in Industrial Scale. Hydrogen 4, 599–619. https://doi.org/10.3390/hydrogen4030039
  89. Ingried, V.F., Haryati, S., Syarif, N., 2022. Hydrothermal LiTiO2 Cathode and Polyurethane Binder of High Current Lithium Ion Batteries. Int. J. Adv. Sci. Eng. Inf. Technol. 12, 1032–1036. https://doi.org/10.18517/ijaseit.12.3.12683
  90. IPCC, 2014. Climate Change 2014: Mitigation of Climate Change
  91. Jeelan basha, K. basha, Balasubramani, S., Sivasankaralingam, V., 2023. Effect of pre-chamber geometrical parameters and operating conditions on the combustion characteristics of the hydrogen-air mixtures in a pre-chamber spark ignition system. Int. J. Hydrogen Energy 48, 25593–25608. https://doi.org/10.1016/j.ijhydene.2023.03.308
  92. Ji, C., Su, T., Wang, S., Zhang, B., Yu, M., Cong, X., 2016. Effect of hydrogen addition on combustion and emissions performance of a gasoline rotary engine at part load and stoichiometric conditions. Energy Convers. Manag. 121, 272–280. https://doi.org/10.1016/j.enconman.2016.05.040
  93. Jia, G., Lei, M., Li, M., Xu, W., Li, R., Lu, Y., Cai, M., 2023. Hydrogen embrittlement in hydrogen-blended natural gas transportation systems: A review. Int. J. Hydrogen Energy 48, 32137–32157. https://doi.org/10.1016/j.ijhydene.2023.04.266
  94. Kanth, S., Debbarma, S., Das, B., 2020a. Effect of hydrogen enrichment in the intake air of diesel engine fuelled with honge biodiesel blend and diesel. Int. J. Hydrogen Energy 45, 32521–32533. https://doi.org/10.1016/j.ijhydene.2020.08.152
  95. Kanth, S., Debbarma, S., Das, B., 2020b. Experimental investigation of rice bran biodiesel with hydrogen enrichment in diesel engine. Energy Sources, Part A Recover. Util. Environ. Eff. 1–18
  96. Karimi, M., Wang, X., Hamilton, J., Negnevitsky, M., 2022. Numerical investigation on hydrogen-diesel dual-fuel engine improvements by oxygen enrichment. Int. J. Hydrogen Energy 47, 25418–25432. https://doi.org/10.1016/j.ijhydene.2022.05.271
  97. Khalid, A.H., Muhamad Said, M.F., Veza, I., Abas, M.A., Roslan, M.F., Abubakar, S., Jalal, M.R., 2024. Hydrogen port fuel injection: Review of fuel injection control strategies to mitigate backfire in internal combustion engine fuelled with hydrogen. Int. J. Hydrogen Energy 66, 571–581. https://doi.org/10.1016/j.ijhydene.2024.04.087
  98. Kian, A.Y., Lim, S.C., 2023. On the Potential of Solar Energy for Chemical and Metal Manufacturing Plants in Malaysia. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 1898–1904. https://doi.org/10.18517/ijaseit.13.5.19052
  99. Knutti, R., Rogelj, J., 2015. The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics. Clim. Change 133, 361–373. https://doi.org/10.1007/s10584-015-1340-3
  100. Korakianitis, T., Namasivayam, A.M., Crookes, R.J., 2010. Hydrogen dual-fuelling of compression ignition engines with emulsified biodiesel as pilot fuel. Int. J. Hydrogen Energy 35, 13329–13344. https://doi.org/10.1016/j.ijhydene.2010.08.007
  101. Koten, H., 2018. Hydrogen effects on the diesel engine performance and emissions. Int. J. Hydrogen Energy 43, 10511–10519. https://doi.org/10.1016/j.ijhydene.2018.04.146
  102. Kovač, A., Paranos, M., Marciuš, D., 2021. Hydrogen in energy transition: A review. Int. J. Hydrogen Energy 46, 10016–10035. https://doi.org/10.1016/j.ijhydene.2020.11.256
  103. Kumar, A., 2018. Global Warming, Climate Change and Greenhouse Gas Mitigation, in: Biofuels: Greenhouse Gas Mitigation and Global Warming. Springer India, New Delhi, pp. 1–16. https://doi.org/10.1007/978-81-322-3763-1_1
  104. Kumar, M., Bhowmik, S., Paul, A., 2022. Effect of pilot fuel injection pressure and injection timing on combustion, performance and emission of hydrogen-biodiesel dual fuel engine. Int. J. Hydrogen Energy 47, 29554–29567. https://doi.org/10.1016/j.ijhydene.2022.06.260
  105. Lamas, M.I., C.G., R., J., T., J.D., R., 2015. Numerical Analysis of Emissions from Marine Engines Using Alternative Fuels. Polish Marit. Res. 22, 48–52. https://doi.org/10.1515/pomr-2015-0070
  106. Le, T.T., Le, H.C., Paramasivam, P., Chung, N., 2024a. Artificial intelligence applications in solar energy. JOIV Int. J. Informatics Vis. 8, 826–844. https://doi.org/10.62527/joiv.8.2.2686
  107. Le, T.T., Sharma, P., Bora, B.J., Tran, V.D., Truong, T.H., Le, H.C., Nguyen, P.Q.P., 2024b. Fueling the future: A comprehensive review of hydrogen energy systems and their challenges. Int. J. Hydrogen Energy 54, 791–816. https://doi.org/10.1016/j.ijhydene.2023.08.044
  108. Lee, I., Tester, J.W., You, F., 2019. Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 109, 551–577. https://doi.org/10.1016/j.rser.2019.04.058
  109. Lee, S.-Y., Lee, J.-H., Kim, Y.-H., Kim, J.-W., Lee, K.-J., Park, S.-J., 2022. Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. Processes 10, 304. https://doi.org/10.3390/pr10020304
  110. Lee, S., Kim, G., Bae, C., 2022. Effect of mixture formation mode on the combustion and emission characteristics in a hydrogen direct-injection engine under different load conditions. Appl. Therm. Eng. 209, 118276. https://doi.org/10.1016/j.applthermaleng.2022.118276
  111. Lhuillier, C., Brequigny, P., Contino, F., Mounaïm-Rousselle, C., 2020. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions. Fuel 269, 117448. https://doi.org/10.1016/j.fuel.2020.117448
  112. Li, G., Long, Y., Zhang, Z., Liang, J., Zhang, Xiaowu, Zhang, Xintang, Wang, Z., 2019. Performance and emissions characteristics of a lean-burn marine natural gas engine with the addition of hydrogen-rich reformate. Int. J. Hydrogen Energy 44, 31544–31556. https://doi.org/10.1016/j.ijhydene.2019.10.007
  113. Li, G., Yu, X., Jin, Z., Shang, Z., Li, D., Li, Y., Zhao, Z., 2020. Study on effects of split injection proportion on hydrogen mixture distribution, combustion and emissions of a gasoline/hydrogen SI engine with split hydrogen direct injection under lean burn condition. Fuel 270, 117488. https://doi.org/10.1016/j.fuel.2020.117488
  114. Li, Q., Ghadiani, H., Jalilvand, V., Alam, T., Farhat, Z., Islam, M., 2024. Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization. Materials (Basel). 17, 965. https://doi.org/10.3390/ma17040965
  115. Li, X., Ma, X., Zhang, J., Akiyama, E., Wang, Y., Song, X., 2020. Review of Hydrogen Embrittlement in Metals: Hydrogen Diffusion, Hydrogen Characterization, Hydrogen Embrittlement Mechanism and Prevention. Acta Metall. Sin. (English Lett. 33, 759–773. https://doi.org/10.1007/s40195-020-01039-7
  116. Li, X., Zhuang, Y., Wang, Y., Zhu, Z., Qian, Y., Zhai, R., 2024. An experimental investigation on the lean-burn characteristics of a novel hydrogen fueled spark ignition engine: Hydrogen injection via a micro-hole on the spark plug. Int. J. Hydrogen Energy 57, 990–999. https://doi.org/10.1016/j.ijhydene.2024.01.008
  117. Liu, H., Anwar, A., Razzaq, A., Yang, L., 2022. The key role of renewable energy consumption, technological innovation and institutional quality in formulating the SDG policies for emerging economies: Evidence from quantile regression. Energy Reports 8, 11810–11824. https://doi.org/10.1016/j.egyr.2022.08.231
  118. Liu, J., Ma, Y., Yang, J., Sun, L., Guo, D., Xiao, P., 2022. Recent advance of metal borohydrides for hydrogen storage. Front. Chem. 10. https://doi.org/10.3389/fchem.2022.945208
  119. Liu, Xinlei, Aljabri, H., Panthi, N., AlRamadan, A.S., Cenker, E., Alshammari, A.T., Magnotti, G., Im, H.G., 2023. Computational study of hydrogen engine combustion strategies: Dual-Fuel compression ignition with Port- and Direct-Injection, Pre-Chamber Combustion, and Spark-Ignition. Fuel 350, 128801. https://doi.org/10.1016/j.fuel.2023.128801
  120. Liu, Xiaole, Liu, S., Shen, L., Bi, Y., Duan, L., 2023. Study on the Effects of the Hydrogen Substitution Rate on the Performance of a Hydrogen–Diesel Dual-Fuel Engine under Different Loads. Energies 16, 5971. https://doi.org/10.3390/en16165971
  121. Liu, Y., Cui, J., Wang, H., Wang, K., Tian, Y., Xue, X., Qiao, Y., Ji, X., Zhang, S., 2023. Ionic liquids as a new cornerstone to support hydrogen energy. Green Chem. 25, 4981–4994. https://doi.org/10.1039/D3GC01003A
  122. Lou, Y., Liao, Z., Sun, J., Jiang, B., Wang, J., Yang, Y., 2019. A novel two-step method to design inter-plant hydrogen network. Int. J. Hydrogen Energy 44, 5686–5695. https://doi.org/10.1016/j.ijhydene.2019.01.099
  123. Lux, B., Deac, G., Kiefer, C.P., Kleinschmitt, C., Bernath, C., Franke, K., Pfluger, B., Willemsen, S., Sensfuß, F., 2022. The role of hydrogen in a greenhouse gas-neutral energy supply system in Germany. Energy Convers. Manag. 270, 116188. https://doi.org/10.1016/j.enconman.2022.116188
  124. Manigandan, S., Ryu, J.I., Praveen Kumar, T.R., Elgendi, M., 2023. Hydrogen and ammonia as a primary fuel – A critical review of production technologies, diesel engine applications, and challenges. Fuel 352, 129100. https://doi.org/10.1016/j.fuel.2023.129100
  125. Månsson, A., 2014. Energy, conflict and war: Towards a conceptual framework. Energy Res. Soc. Sci. 4, 106–116. https://doi.org/10.1016/j.erss.2014.10.004
  126. Manu, P.V., Kishan, T.R.N., Jayaraj, S., Ramaraju, A., 2021. On-board generation of HHO gas with dry cell electrolyser and its applications: a review. Int. J. Energy Technol. Policy 17, 12. https://doi.org/10.1504/IJETP.2021.111901
  127. Marih, S., Ghomri, L., Bekkouche, B., 2020. Evaluation of the Wind Potential and Optimal Design of a Wind Farm in The Arzew Industrial Zone in Western Algeria. Int. J. Renew. Energy Dev. 9, 177–187. https://doi.org/10.14710/ijred.9.2.177-187
  128. Martinez, S., Merola, S., Curto, P., Vaglieco, B.M., Irimescu, A., 2023. Conversion of a Small Size Passenger Car to Hydrogen Fueling: Focus on Vehicle Dynamics and ECU Remapping Requirements. https://doi.org/10.4271/2023-24-0065
  129. Masuk, N.I., Mostakim, K., Kanka, S.D., 2021. Performance and Emission Characteristic Analysis of a Gasoline Engine Utilizing Different Types of Alternative Fuels: A Comprehensive Review. Energy & Fuels 35, 4644–4669. https://doi.org/10.1021/acs.energyfuels.0c04112
  130. Matla, J., Kaźmierczak, A., Haller, P., Trocki, M., 2024. Hydrogen as a fuel for spark ignition combustion engines – state of knowledge and concept. Combust. Engines 196, 73–79. https://doi.org/10.19206/CE-171541
  131. Minh Loy, A.C., Yusup, S., Chan, Y.H., Borhan, A., Lim, H.Y., Minh Loy, A.C., Yusup, S., Chan, Y.H., Borhan, A., Lim, H.Y., Shen How, B., Fui Chin, B.L., 2020. Optimization Study of Syngas Production from Catalytic Air Gasification of Rice Husk. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 1784–1791. https://doi.org/10.18517/ijaseit.10.5.9906
  132. Mohanasundaram, K., Govindan, N., 2021. Effect of air preheating, exhaust gas re-circulation and hydrogen enrichment on biodiesel/methane dual fuel engine. Therm. Sci. 25, 449–464. https://doi.org/10.2298/TSCI191024146M
  133. Molina, S., Novella, R., Gomez-Soriano, J., Olcina-Girona, M., 2024. Impact of medium-pressure direct injection in a spark-ignition engine fueled by hydrogen. Fuel 360, 130618. https://doi.org/10.1016/j.fuel.2023.130618
  134. Molina, S., Novella, R., Gomez-Soriano, J., Olcina-Girona, M., 2023. Experimental Activities on a Hydrogen-Fueled Spark-Ignition Engine for Light-Duty Applications. Appl. Sci. 13, 12055. https://doi.org/10.3390/app132112055
  135. Morales-Ospino, R., Celzard, A., Fierro, V., 2023. Strategies to recover and minimize boil-off losses during liquid hydrogen storage. Renew. Sustain. Energy Rev. 182, 113360. https://doi.org/10.1016/j.rser.2023.113360
  136. Muralidhara, D.M., Banapurmath, N.R., Udayaravi, M., Prabhakar Reddy, C., Harari, P.A., Karthik, T., 2022. Effect of hydrogen flow rates on the performance of two biodiesels fuelled dual fuel engine. Mater. Today Proc. 49, 2189–2196. https://doi.org/10.1016/j.matpr.2021.09.090
  137. Murugesan, P., Hoang, A.T., Perumal Venkatesan, E., Santosh Kumar, D., Balasubramanian, D., Le, A.T., Pham, V.V., 2022. Role of hydrogen in improving performance and emission characteristics of homogeneous charge compression ignition engine fueled with graphite oxide nanoparticle-added microalgae biodiesel/diesel blends. Int. J. Hydrogen Energy 47, 37617–37634. https://doi.org/10.1016/j.ijhydene.2021.08.107
  138. Naqvi, S.R., Kazmi, B., Ammar Taqvi, S.A., Chen, W.-H., Juchelková, D., 2024. Techno economic analysis for advanced methods of green hydrogen production. Curr. Opin. Green Sustain. Chem. 48, 100939. https://doi.org/10.1016/j.cogsc.2024.100939
  139. Navid, K., Mortaza, Y., Amin, P., Ali Saberi, M., Fuente, G.F. de la, 2020. E ff ect of Syngas Composition on the Combustion and Emissions Characteristics of a Syngas / Diesel. Energies 13, 212. https://doi.org/10.3390/en13010212
  140. Neumann, F., Zeyen, E., Victoria, M., Brown, T., 2022. Benefits of a Hydrogen Network in Europe. SSRN Electron. J. https://doi.org/10.2139/ssrn.4173442
  141. Nguyen, D., Choi, Y., Park, C., Kim, Y., Lee, J., 2021. Effect of supercharger system on power enhancement of hydrogen-fueled spark-ignition engine under low-load condition. Int. J. Hydrogen Energy 46, 6928–6936. https://doi.org/10.1016/j.ijhydene.2020.11.144
  142. Nguyen, D., Kar, T., Turner, J.W.G., 2023. Performance, Emissions, and Combustion Characteristics of a Hydrogen-Fueled Spark-Ignited Engine at Different Compression Ratios: Experimental and Numerical Investigation. Energies 16, 5730. https://doi.org/10.3390/en16155730
  143. Nguyen, H.-B., Nguyen, V.-T.-A., Ly, V.-D., Bui, T.-A., 2022. Biodiesel Produced from Pangasius Oil Operating a Diesel Engine: Case Study in Vietnam. Int. J. Adv. Sci. Eng. Inf. Technol. 12, 477–482. https://doi.org/10.18517/ijaseit.12.2.16159
  144. Nguyen, H.P., Hoang, A.T., Nizetic, S., Nguyen, X.P., Le, A.T., Luong, C.N., Chu, V.D., Pham, V.V., 2021. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. Int. Trans. Electr. Energy Syst. 31, e12580. https://doi.org/10.1002/2050-7038.12580
  145. Nguyen, T.B.N., Le, N.V.L., 2023. Biomass resources and thermal conversion biomass to biofuel for cleaner energy: A review. J. Emerg. Sci. Eng. 1, 6–13. https://doi.org/10.61435/jese.2023.2
  146. Nguyen, T.H., Paramasivam, P., Le, H.C., Nguyen, D.C., 2024. Harnessing a Better Future: Exploring AI and ML Applications in Renewable Energy. JOIV Int. J. Informatics Vis. 8, 55–78. http://dx.doi.org/10.62527/joiv.8.1.2637
  147. Nguyen, V.G., Sirohi, R., Tran, M.H., Truong, T.H., Duong, M.T., Pham, M.T., Cao, D.N., 2024a. Renewable energy role in low-carbon economy and net-zero goal: Perspectives and prospects. Energy Environ. https://doi.org/10.1177/0958305X241253772
  148. Nguyen, V.G., Tran, M.H., Paramasivam, P., Le, H.C., Nguyen, D.T., 2024b. Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 268–286. https://doi.org/10.18517/ijaseit.14.1.17489
  149. Nguyen, V.N., Rudzki, K., Marek, D., Pham, N.D.K., Pham, M.T., Nguyen, P.Q.P., Nguyen, X.P., 2023. Understanding fuel saving and clean fuel strategies towards green maritime. Polish Marit. Res. 30, 146–164. https://doi.org/10.2478/pomr-2023-0030
  150. Nguyen, V.N., Tarełko, W., Sharma, P., El-Shafay, A.S., Chen, W.-H., Nguyen, P.Q.P., Nguyen, X.P., Hoang, A.T., 2024. Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects. Energy & Fuels 38, 1692–1712. https://doi.org/10.1021/acs.energyfuels.3c04343
  151. Nguyen, X.P., Hoang, A.T., Ölçer, A.I., Huynh, T.T., 2021a. Record decline in global CO2 emissions prompted by COVID-19 pandemic and its implications on future climate change policies. Energy Sources, Part A Recover. Util. Environ. Eff. 1–4. https://doi.org/10.1080/15567036.2021.1879969
  152. Nguyen, X.P., Le, N.D., Pham, V.V., Huynh, T.T., Dong, V.H., Hoang, A.T., 2021b. Mission, challenges, and prospects of renewable energy development in Vietnam. Energy Sources, Part A Recover. Util. Environ. Eff. 1–13. https://doi.org/10.1080/15567036.2021.1965264
  153. Nouni, M.R., Jha, P., Sarkhel, R., Banerjee, C., Tripathi, A.K., Manna, J., 2021. Alternative fuels for decarbonisation of road transport sector in India: Options, present status, opportunities, and challenges. Fuel 305, 121583. https://doi.org/10.1016/J.FUEL.2021.121583
  154. Noussan, M., Raimondi, P.P., Scita, R., Hafner, M., 2020. The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective. Sustainability 13, 298. https://doi.org/10.3390/su13010298
  155. Olszewski, W., Dzida, M., Nguyen, V.G., Cao, D.N., 2023. Reduction of CO 2 Emissions from Offshore Combined Cycle Diesel Engine-Steam Turbine Power Plant Powered by Alternative Fuels. Polish Marit. Res. 30, 71–80. https://doi.org/10.2478/pomr-2023-0040
  156. Oral, F., 2024. Effect of using gasoline and gasoline-ethanol fuel mixture on performance and emissions in a hydrogen generator supported SI engine. Case Stud. Therm. Eng. 55, 104192. https://doi.org/10.1016/j.csite.2024.104192
  157. Özer, S., 2021. Effects of alternative fuel use in a vehicle with TSI (turbocharged direct-injection spark-ignition) engine technology. Int. J. Green Energy 18, 1309–1319. https://doi.org/10.1080/15435075.2021.1904406
  158. Paramasivama, P., Naima, K., Dzida, M., 2024. Soft computing-based modelling and optimization of NOx emission from a variable compression ratio diesel engine. J. Emerg. Sci. Eng. 2, e21. https://doi.org/10.61435/jese.2024.e21
  159. Pardo-García, C., Orjuela-Abril, S., Pabón-León, J., 2022. Investigation of Emission Characteristics and Lubrication Oil Properties in a Dual Diesel–Hydrogen Internal Combustion Engine. Lubricants 10, 59. https://doi.org/10.3390/lubricants10040059
  160. Park, C., Kim, Y., Oh, S., Oh, J., Choi, Y., 2021. Effect of the operation strategy and spark plug conditions on the torque output of a hydrogen port fuel injection engine. Int. J. Hydrogen Energy 46, 37063–37070. https://doi.org/10.1016/j.ijhydene.2021.08.229
  161. Park, C., Kim, Y., Oh, S., Oh, J., Choi, Y., Baek, H., Lee, S.W., Lee, K., 2022. Effect of fuel injection timing and injection pressure on performance in a hydrogen direct injection engine. Int. J. Hydrogen Energy 47, 21552–21564. https://doi.org/10.1016/j.ijhydene.2022.04.274
  162. Peschel, A., 2020. Industrial Perspective on Hydrogen Purification, Compression, Storage, and Distribution. Fuel Cells 20, 385–393. https://doi.org/10.1002/fuce.201900235
  163. Prempeh, K.B., Kyeremeh, C., Danso, F.K., Yeboah, S.A., 2024. Exploring the impact of financial development on renewable energy consumption within the renewable energy-environmental Kuznets curve framework in Sub-Saharan Africa. Int. J. Renew. Energy Dev. 13, 884–897. https://doi.org/10.61435/ijred.2024.60339
  164. Purayil, S.T.P., Hamdan, M.O., Al-Omari, S.A.B., Selim, M.Y.E., Elnajjar, E., 2023. Review of hydrogen–gasoline SI dual fuel engines: Engine performance and emission. Energy Reports 9, 4547–4573. https://doi.org/10.1016/j.egyr.2023.03.054
  165. Qi, Y., Liu, W., Liu, S., Wang, W., Peng, Y., Wang, Z., 2023. A review on ammonia-hydrogen fueled internal combustion engines. eTransportation 18, 100288. https://doi.org/10.1016/j.etran.2023.100288
  166. Qureshi, F., Yusuf, M., Arham Khan, M., Ibrahim, H., Ekeoma, B.C., Kamyab, H., Rahman, M.M., Nadda, A.K., Chelliapan, S., 2023. A State-of-The-Art Review on the Latest trends in Hydrogen production, storage, and transportation techniques. Fuel 340, 127574. https://doi.org/10.1016/j.fuel.2023.127574
  167. Rahman, M.M., Kamil, M., Bakar, R.A., 2011. Engine performance and optimum injection timing for 4-cylinder direct injection hydrogen fueled engine. Simul. Model. Pract. Theory 19, 734–751. https://doi.org/10.1016/j.simpat.2010.10.006
  168. Rahman, S.A., Meryandini, A., Juanssilfero, A.B., Fahrurrozi, 2023. Cocoa Pod Husk (CPH) for Biomass on Bioethanol Production. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 828–836. https://doi.org/10.18517/ijaseit.13.3.18794
  169. Rahmani, R., Dolatabadi, N., Rahnejat, H., 2023. Multiphysics performance assessment of hydrogen fuelled engines. Int. J. Engine Res. 24, 4169–4189. https://doi.org/10.1177/14680874231182211
  170. Rathor, D., Nizami, A.-S., Singh, A., Pant, D., 2016. Key issues in estimating energy and greenhouse gas savings of biofuels: challenges and perspectives. Biofuel Res. J. 3, 380–393. https://doi.org/10.18331/BRJ2016.3.2.3
  171. Razzaq, I., Amjad, M., Qamar, A., Asim, M., Ishfaq, K., Razzaq, A., Mawra, K., 2023. Reduction in energy consumption and CO2 emissions by retrofitting an existing building to a net zero energy building for the implementation of SDGs 7 and 13. Front. Environ. Sci. 10. https://doi.org/10.3389/fenvs.2022.1028793
  172. Ren, L., Zhou, S., Ou, X., 2020. Life-cycle energy consumption and greenhouse-gas emissions of hydrogen supply chains for fuel-cell vehicles in China. Energy 209, 118482. https://doi.org/10.1016/j.energy.2020.118482
  173. Rivard, E., Trudeau, M., Zaghib, K., 2019. Hydrogen Storage for Mobility: A Review. Materials (Basel). 12, 1973. https://doi.org/10.3390/ma12121973
  174. Rodriguez, E., Lefvert, A., Fridahl, M., Grönkvist, S., Haikola, S., Hansson, A., 2021. Tensions in the energy transition: Swedish and Finnish company perspectives on bioenergy with carbon capture and storage. J. Clean. Prod. 280, 124527. https://doi.org/10.1016/j.jclepro.2020.124527
  175. Roy, A., Pramanik, S., 2024. A review of the hydrogen fuel path to emission reduction in the surface transport industry. Int. J. Hydrogen Energy 49, 792–821. https://doi.org/10.1016/j.ijhydene.2023.07.010
  176. Roy, M.K., Kawahara, N., Tomita, E., Fujitani, T., 2011. High-Pressure Hydrogen Jet and Combustion Characteristics in a Direct-Injection Hydrogen Engine. SAE Int. J. Fuels Lubr. 5, 2011-01–2003. https://doi.org/10.4271/2011-01-2003
  177. Rudiyanto, B., Wicaksono, A., Hijriawan, M., 2023. Evaluation and Optimization Based on Exergy in Kamojang Geothermal Power Plant Unit 3. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 2372–2379. https://doi.org/10.18517/ijaseit.13.6.19441
  178. Rueda-Vázquez, J.M., Serrano, J., Pinzi, S., Jiménez-Espadafor, F.J., Dorado, M.P., 2024. A Review of the Use of Hydrogen in Compression Ignition Engines with Dual-Fuel Technology and Techniques for Reducing NOx Emissions. Sustainability 16, 3462. https://doi.org/10.3390/su16083462
  179. Rusdianasari, -, Taqwa, A., Syarif, A., Bow, Y., 2023. Hydrogen Recovery from Electroplating Wastewater Electrocoagulation Treatment. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 592–598. https://doi.org/10.18517/ijaseit.13.2.16667
  180. Saborío-González, M., Rojas-Hernández, I., 2018. Revisión: Fragilización por hidrógeno de metales y aleaciones en motores de combustión. Rev. Tecnol. en Marcha 31, 3. https://doi.org/10.18845/tm.v31i2.3620
  181. Sadeq, A.M., Homod, R.Z., Hussein, A.K., Togun, H., Mahmoodi, A., Isleem, H.F., Patil, A.R., Moghaddam, A.H., 2024. Hydrogen energy systems: Technologies, trends, and future prospects. Sci. Total Environ. 939, 173622. https://doi.org/10.1016/j.scitotenv.2024.173622
  182. Sagar, S.M.V., Agarwal, A.K., 2017. Experimental investigation of varying composition of HCNG on performance and combustion characteristics of a SI engine. Int. J. Hydrogen Energy 42, 13234–13244. https://doi.org/10.1016/j.ijhydene.2017.03.063
  183. Said, Z., Le, D.T.N., Sharma, P., Dang, V.H., Le, H.S., Nguyen, D.T., Bui, T.A.E., Nguyen, V.G., 2022a. Optimization of combustion, performance, and emission characteristics of a dual-fuel diesel engine powered with microalgae-based biodiesel/diesel blends and oxyhydrogen. Fuel 326, 124987. https://doi.org/10.1016/J.FUEL.2022.124987
  184. Said, Z., Sharma, P., Tiwari, A.K., Le, V.V., Huang, Z., Bui, V.G., Hoang, A.T., 2022b. Application of novel framework based on ensemble boosted regression trees and Gaussian process regression in modelling thermal performance of small-scale Organic Rankine Cycle (ORC) using hybrid nanofluid. J. Clean. Prod. 360, 132194. https://doi.org/10.1016/j.jclepro.2022.132194
  185. Saikawa, E., Kim, H., Zhong, M., Avramov, A., Zhao, Y., Janssens-Maenhout, G., Kurokawa, J., Klimont, Z., Wagner, F., Naik, V., Horowitz, L.W., Zhang, Q., 2017. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China. Atmos. Chem. Phys. 17, 6393–6421. https://doi.org/10.5194/acp-17-6393-2017
  186. SAKINTUNA, B., LAMARIDARKRIM, F., HIRSCHER, M., 2007. Metal hydride materials for solid hydrogen storage: A review☆. Int. J. Hydrogen Energy 32, 1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022
  187. Salah, W.A., Abuhelwa, M., Bashir, M.J., 2021. The key role of sustainable renewable energy technologies in facing shortage of energy supplies in Palestine: Current practice and future potential. J. Clean. Prod. 293, 125348. https://doi.org/10.1016/j.jclepro.2020.125348
  188. Salvi, B.L., Subramanian, K.A., 2022. A novel approach for experimental study and numerical modeling of combustion characteristics of a hydrogen fuelled spark ignition engine. Sustain. Energy Technol. Assessments 51, 101972. https://doi.org/10.1016/j.seta.2022.101972
  189. Saravanan, N., Nagarajan, G., 2009. Experimental investigation on a DI dual fuel engine with hydrogen injection. Int. J. Energy Res. 33, 295–308. https://doi.org/10.1002/er.1477
  190. Saravanan, N., Nagarajan, G., Dhanasekaran, C., Kalaiselvan, K.M., 2007. Experimental Investigation of Hydrogen Fuel Injection in DI Dual Fuel Diesel Engine. https://doi.org/10.4271/2007-01-1465
  191. Sarıdemir, S., Polat, F., Ağbulut, Ü., 2024. Improvement of worsened diesel and waste biodiesel fuelled-engine characteristics with Hydrogen enrichment: A deep discussion on combustion, performance, and emission analyses. Process Saf. Environ. Prot. https://doi.org/10.1016/j.psep.2024.02.018
  192. Sathishkumar, S., Ibrahim, M.M., 2021. Investigation on the effect of injection schedule and EGR in hydrogen energy share using common rail direct injection dual fuel engine. Int. J. Hydrogen Energy 46, 11494–11510. https://doi.org/10.1016/j.ijhydene.2020.05.151
  193. Schüth, F., 2014. Hydrogen: Economics and its Role in Biorefining, in: Catalytic Hydrogenation for Biomass Valorization. The Royal Society of Chemistry, pp. 1–21. https://doi.org/10.1039/9781782620099-00001
  194. Scovell, M.D., 2022. Explaining hydrogen energy technology acceptance: A critical review. Int. J. Hydrogen Energy 47, 10441–10459. https://doi.org/10.1016/j.ijhydene.2022.01.099
  195. Serbin, S., Burunsuz, K., Chen, D., Kowalski, J., 2022. Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen. Polish Marit. Res. 29, 64–76. https://doi.org/10.2478/pomr-2022-0018
  196. Seyam, S., Dincer, I., Agelin-Chaab, M., 2023. A comprehensive assessment of a new hybrid combined marine engine using alternative fuel blends. Energy 283, 128488. https://doi.org/10.1016/j.energy.2023.128488
  197. Shadvar, S., Rahman, A., 2024. Performance evaluation of off-grid solar systems for critical medical instruments in remote regions. J. Emerg. Sci. Eng. 2, e22. https://doi.org/10.61435/jese.2024.e22
  198. Sharma, P., Jain, A., Bora, B.J., Balakrishnan, D., Show, P.L., Ramaraj, R., Ağbulut, Ü., Khoo, K.S., 2023. Application of modern approaches to the synthesis of biohydrogen from organic waste. Int. J. Hydrogen Energy 48, 21189–21213. https://doi.org/10.1016/j.ijhydene.2023.03.029
  199. Sharma, P., Sahoo, B.B., Said, Z., Hadiyanto, H., Nižetić, S., Huang, Z., Li, C., Hoang, A.T., 2022a. Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas. Int. J. Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2022.04.152
  200. Sharma, P., Said, Z., Kumar, A., Nižetić, S., Pandey, A., Hoang, A.T., Huang, Z., Afzal, A., Li, C., Le, A.T., Nguyen, X.P., Tran, V.D., 2022b. Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy & Fuels 36, 6626–6658. https://doi.org/10.1021/acs.energyfuels.2c01006
  201. Sharma, P., Sivaramakrishnaiah, M., Deepanraj, B., Saravanan, R., Reddy, M.V., 2024. A novel optimization approach for biohydrogen production using algal biomass. Int. J. Hydrogen Energy 52, 94–103. https://doi.org/10.1016/j.ijhydene.2022.09.274
  202. Shaw, R., Mukherjee, S., 2022. The development of carbon capture and storage (CCS) in India: A critical review. Carbon Capture Sci. Technol. 2, 100036. https://doi.org/10.1016/j.ccst.2022.100036
  203. Shi, J., Zhu, Y., Feng, Y., Yang, J., Xia, C., 2023. A Prompt Decarbonization Pathway for Shipping: Green Hydrogen, Ammonia, and Methanol Production and Utilization in Marine Engines. Atmosphere (Basel). 14, 584. https://doi.org/10.3390/atmos14030584
  204. Shi, W., Yu, X., Zhang, H., Li, H., 2017. Effect of spark timing on combustion and emissions of a hydrogen direct injection stratified gasoline engine. Int. J. Hydrogen Energy 42, 5619–5626. https://doi.org/10.1016/j.ijhydene.2016.02.060
  205. Shu, D.Y., Deutz, S., Winter, B.A., Baumgärtner, N., Leenders, L., Bardow, A., 2023. The role of carbon capture and storage to achieve net-zero energy systems: Trade-offs between economics and the environment. Renew. Sustain. Energy Rev. 178, 113246. https://doi.org/10.1016/j.rser.2023.113246
  206. Shu, Z., Liang, W., Zheng, X., Lei, G., Cao, P., Dai, W., Qian, H., 2021. Dispersion characteristics of hydrogen leakage: Comparing the prediction model with the experiment. Energy 236, 121420. https://doi.org/10.1016/j.energy.2021.121420
  207. Shyu, C.-W., 2021. A framework for ‘right to energy’ to meet UN SDG7: Policy implications to meet basic human energy needs, eradicate energy poverty, enhance energy justice, and uphold energy democracy. Energy Res. Soc. Sci. 79, 102199. https://doi.org/10.1016/J.ERSS.2021.102199
  208. Siadkowska, K., Barański, G., 2024. Combustion stability for early and late direct hydrogen injection in a dual fuel diesel engine. Combust. Engines 196, 89–98. https://doi.org/10.19206/CE-171390
  209. Sirohi, R., Vivekanand, V., Pandey, A.K., Tarafdar, A., Awasthi, M.K., Shakya, A., Kim, S.H., Sim, S.J., Tuan, H.A., Pandey, A., 2023. Emerging trends in role and significance of biochar in gaseous biofuels production. Environ. Technol. Innov. 30, 103100. https://doi.org/10.1016/j.eti.2023.103100
  210. Solaimuthu, C., Ganesan, V., Senthilkumar, D., Ramasamy, K.K., 2015. Emission reductions studies of a biodiesel engine using EGR and SCR for agriculture operations in developing countries. Appl. Energy 138, 91–98. https://doi.org/10.1016/j.apenergy.2014.04.023
  211. Srinath, A.N., Pena López, Á., Miran Fashandi, S.A., Lechat, S., di Legge, G., Nabavi, S.A., Nikolaidis, T., Jafari, S., 2022. Thermal Management System Architecture for Hydrogen-Powered Propulsion Technologies: Practices, Thematic Clusters, System Architectures, Future Challenges, and Opportunities. Energies 15, 304. https://doi.org/10.3390/en15010304
  212. Srinivasa Murthy, S., Anil Kumar, E., 2014. Advanced materials for solid state hydrogen storage: “Thermal engineering issues.” Appl. Therm. Eng. 72, 176–189. https://doi.org/10.1016/j.applthermaleng.2014.04.020
  213. Stępień, Z., Urzędowska, W., 2021. Tłokowe silniki spalinowe zasilane wodorem – wyzwania. Nafta-Gaz 77, 830–840. https://doi.org/10.18668/NG.2021.12.06
  214. Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., 2013. Climate change 2013 the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Clim. Chang. 2013 Phys. Sci. Basis Work. Gr. I Contrib. to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 9781107057, 1–1535. https://doi.org/10.1017/CBO9781107415324
  215. Su-ungkavatin, P., Tiruta-Barna, L., Hamelin, L., 2023. Biofuels, electrofuels, electric or hydrogen?: A review of current and emerging sustainable aviation systems. Prog. Energy Combust. Sci. 96, 101073. https://doi.org/10.1016/j.pecs.2023.101073
  216. Su, T., Ji, C., Wang, S., Shi, L., Cong, X., 2018. Effect of ignition timing on performance of a hydrogen-enriched n-butanol rotary engine at lean condition. Energy Convers. Manag. 161, 27–34. https://doi.org/10.1016/j.enconman.2018.01.072
  217. Subramanian, K.A., Salvi, B.L., 2016. A Numerical Simulation of Analysis of Backfiring Phenomena in a Hydrogen-Fueled Spark Ignition Engine. J. Eng. Gas Turbines Power 138. https://doi.org/10.1115/1.4033182
  218. Subramanian, M., Hoang, A.T., B, K., Nižetić, S., Solomon, J.M., Balasubramanian, D., C, S., G, T., Metghalchi, H., Nguyen, X.P., 2021. A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles. J. Clean. Prod. 322, 129079. https://doi.org/10.1016/j.jclepro.2021.129079
  219. Sun, Z., Hong, J., Zhang, T., Sun, B., Yang, B., Lu, L., Li, L., Wu, K., 2023. Hydrogen engine operation strategies: Recent progress, industrialization challenges, and perspectives. Int. J. Hydrogen Energy 48, 366–392. https://doi.org/10.1016/j.ijhydene.2022.09.256
  220. Suresh, D., Porpatham, E., 2023. Influence of high compression ratio and hydrogen addition on the performance and emissions of a lean burn spark ignition engine fueled by ethanol-gasoline. Int. J. Hydrogen Energy 48, 14433–14448. https://doi.org/10.1016/j.ijhydene.2022.12.275
  221. Swain, M.R., 2001. Fuel Leak Simulation. Proc. 2001 DOE Hydrog. Progr. Rev. 679–689
  222. Swardika, I.K., Santiary, P.A.W., Purnama, I.B.I., Suasnawa, I.W., 2020. Development of Green Zone Energy Mapping for Community-based Low Carbon Emissions. Int. J. Adv. Sci. Eng. Inf. Technol. 10, 2472–2477. https://doi.org/10.18517/ijaseit.10.6.12642
  223. Tahtouh, T., Halter, F., Samson, E., Mounaïm-Rousselle, C., 2011. Effects of hydrogen addition under lean and diluted conditions on combustion characteristics and emissions in a spark-ignition engine. Int. J. Engine Res. 12, 466–483. https://doi.org/10.1177/1468087411409309
  224. Tan, D., Wu, Y., Lv, J., Li, J., Ou, X., Meng, Y., Lan, G., Chen, Y., Zhang, Z., 2023. Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology. Energy 263, 125869. https://doi.org/10.1016/j.energy.2022.125869
  225. Tan, X., Tan, T., 2022. Biofuels from biomass toward a net-zero carbon and sustainable world. Joule 6, 1396–1399. https://doi.org/10.1016/j.joule.2022.06.005
  226. Thapa, P., Mainali, B., Dhakal, S., 2023. Focus on Climate Action: What Level of Synergy and Trade-Off Is There between SDG 13; Climate Action and Other SDGs in Nepal? Energies 16, 566. https://doi.org/10.3390/en16010566
  227. Tira, H.S., Tsolakis, A., Turner, D., Herreros, J.M., Dearn, K.D., Theinnoi, K., Wyszynski, M.L., 2014. Influence of Fuel Properties, Hydrogen, and Reformate Additions on Diesel-Biogas Dual-Fueled Engine. J. Energy Eng. 140. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000173
  228. Trinh, V.L., Chung, C.K., 2023. Renewable energy for SDG-7 and sustainable electrical production, integration, industrial application, and globalization: Review. Clean. Eng. Technol. 15, 100657. https://doi.org/10.1016/j.clet.2023.100657
  229. Ugwu, J., Odo, K.C., Oluka, L.O., Salami, K.O., 2022. A Systematic Review on the Renewable Energy Development, Policies and Challenges in Nigeria with an International Perspective and Public Opinions. Int. J. Renew. Energy Dev. 11, 287–308. https://doi.org/10.14710/ijred.2022.40359
  230. Urroz, J.C., Diéguez, P.M., Arzamendi, G., Arana, M., Gandía, L.M., 2023. Gaseous fueling of an adapted commercial automotive spark-ignition engine: Simplified thermodynamic modeling and experimental study running on hydrogen, methane, carbon monoxide and their mixtures. Fuel 337, 127178. https://doi.org/10.1016/j.fuel.2022.127178
  231. Ustolin, F., Lamb, J.J., Burheim, O.S., Pollet, B.G., 2020. Energy and Safety of Hydrogen Storage, in: Hydrogen, Biomass and Bioenergy. Elsevier, pp. 133–153. https://doi.org/10.1016/B978-0-08-102629-8.00008-6
  232. Verhelst, S., 2014. Recent progress in the use of hydrogen as a fuel for internal combustion engines. Int. J. Hydrogen Energy 39, 1071–1085. https://doi.org/10.1016/j.ijhydene.2013.10.102
  233. Verhelst, S., 2001. Aspects concerning the optimisation of a hydrogen fueled engine. Int. J. Hydrogen Energy 26, 981–985. https://doi.org/10.1016/S0360-3199(01)00031-3
  234. Verma, G., Prasad, R.K., Agarwal, R.A., Jain, S., Agarwal, A.K., 2016. Experimental investigations of combustion, performance and emission characteristics of a hydrogen enriched natural gas fuelled prototype spark ignition engine. Fuel 178, 209–217
  235. Vimalananth, V.T., Panithasan, M.S., Venkadesan, G., 2022. Investigating the effects of injection and induction modes of hydrogen addition in a CRDI pilot diesel-fuel engine with exhaust gas recirculation. Int. J. Hydrogen Energy
  236. Wang, G., Sadiq, M., Bashir, T., Jain, V., Ali, S.A., Shabbir, M.S., 2022. The dynamic association between different strategies of renewable energy sources and sustainable economic growth under SDGs. Energy Strateg. Rev. 42, 100886. https://doi.org/10.1016/j.esr.2022.100886
  237. Weber, M., 2006. Some safety aspects on the design of sparger systems for the oxidation of organic liquids. Process Saf. Prog. 25, 326–330. https://doi.org/10.1002/prs.10143
  238. Wetegrove, M., Duarte, M.J., Taube, K., Rohloff, M., Gopalan, H., Scheu, C., Dehm, G., Kruth, A., 2023. Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy. Hydrogen 4, 307–322. https://doi.org/10.3390/hydrogen4020022
  239. WHITE, C., STEEPER, R., LUTZ, A., 2006. The hydrogen-fueled internal combustion engine: a technical review. Int. J. Hydrogen Energy 31, 1292–1305. https://doi.org/10.1016/j.ijhydene.2005.12.001
  240. Woertz, I.C., Benemann, J.R., Du, N., Unnasch, S., Mendola, D., Mitchell, B.G., Lundquist, T.J., 2014. Life Cycle GHG Emissions from Microalgal Biodiesel – A CA-GREET Model. Environ. Sci. Technol. 48, 6060–6068. https://doi.org/10.1021/es403768q
  241. Wu, Y., Devi, P.B., Anbarasu, A., Sołowski, G., Chanh, H.C., Chi, N.T.L., Nasif, O., Alharbi, S.A., Xia, C., 2022. Estimation of the engine performance and emission characteristics of hydrogen feed vehicles with modified injection fuel system. Fuel 329, 125339. https://doi.org/10.1016/j.fuel.2022.125339
  242. Xie, H., Li, X., Christopher, D.M., 2015. Emergency blower ventilation to disperse hydrogen leaking from a hydrogen-fueled vehicle. Int. J. Hydrogen Energy 40, 8230–8238. https://doi.org/10.1016/j.ijhydene.2015.03.146
  243. Xu, L., Dong, H., Liu, S., Shen, L., Bi, Y., 2023. Study on the Combustion Mechanism of Diesel/Hydrogen Dual Fuel and the Influence of Pilot Injection and Main Injection. Processes 11, 2122. https://doi.org/10.3390/pr11072122
  244. Yadav, P.S., Gautam, R., Le, T.T., Khandelwal, N., Le, A.T., Hoang, A.T., 2024. A comprehensive analysis of energy, exergy, performance, and emissions of a spark-ignition engine running on blends of gasoline, ethanol, and isoamyl alcohol. Energy 307, 132548. https://doi.org/10.1016/j.energy.2024.132548
  245. Yilmaz, I.T., Gumus, M., 2018. Effects of hydrogen addition to the intake air on performance and emissions of common rail diesel engine. Energy 142, 1104–1113. https://doi.org/10.1016/j.energy.2017.10.018
  246. Yip, H.L., Srna, A., Yuen, A.C.Y., Kook, S., Taylor, R.A., Yeoh, G.H., Medwell, P.R., Chan, Q.N., 2019. A Review of Hydrogen Direct Injection for Internal Combustion Engines: Towards Carbon-Free Combustion. Appl. Sci. 9, 4842. https://doi.org/10.3390/app9224842
  247. Yu, M., Kubiczek, J., Ding, K., Jahanzeb, A., Iqbal, N., 2022. Revisiting SDG-7 under energy efficiency vision 2050: the role of new economic models and mass digitalization in OECD. Energy Effic. 15, 2. https://doi.org/10.1007/s12053-021-10010-z
  248. Yu, X., Du, Y., Sun, P., Liu, L., Wu, H., Zuo, X., 2017. Effects of hydrogen direct injection strategy on characteristics of lean-burn hydrogen–gasoline engines. Fuel 208, 602–611. https://doi.org/10.1016/j.fuel.2017.07.059
  249. Zhang, L., Qiu, Y., Chen, Y., Hoang, A.T., 2023. Multi-objective particle swarm optimization applied to a solar-geothermal system for electricity and hydrogen production; Utilization of zeotropic mixtures for performance improvement. Process Saf. Environ. Prot. 175, 814–833. https://doi.org/10.1016/j.psep.2023.05.082
  250. Zhang, Q., Yang, Y., Feng, X., Yang, M., Zhao, L., 2021. The integration of hybrid hydrogen networks for refinery and synthetic plant of chemicals. Int. J. Hydrogen Energy 46, 1473–1487. https://doi.org/10.1016/j.ijhydene.2020.10.063
  251. Zhang, T., 2024. On the possibility of large-scale use of hydrogen fuel engines in real-life. Sci. Technol. Eng. Chem. Environ. Prot. 1. https://doi.org/10.61173/204d2c29
  252. Zhao, N., Liu, Z., Wang, L., Pan, J., Huang, Z., 2024. Experimental Study on Performance and Emission of an Electric Turbocharged Hydrogen Direct Injection Engine. ACS Omega 9, 27407–27414. https://doi.org/10.1021/acsomega.4c02222
  253. Zhao, R., Xu, L., Su, X., Feng, S., Li, C., Tan, Q., Wang, Z., 2020. A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines. Polish Marit. Res. 27, 80–90. https://doi.org/10.2478/pomr-2020-0068
  254. Zheng, Y., Tan, Y., Zhou, C., Chen, G., Li, J., Liu, Y., Liao, B., Zhang, G., 2020. A review on effect of hydrogen on rubber seals used in the high-pressure hydrogen infrastructure. Int. J. Hydrogen Energy 45, 23721–23738. https://doi.org/10.1016/j.ijhydene.2020.06.069
  255. Zhou, L., Liao, Z., Wang, J., Jiang, B., Yang, Y., Hui, D., 2013. Optimal design of sustainable hydrogen networks. Int. J. Hydrogen Energy 38, 2937–2950. https://doi.org/10.1016/j.ijhydene.2012.12.084
  256. Żółtowski, B., Żółtowski, M., 2015. A Hydrogenic Electrolyzer for Fuels. Polish Marit. Res. 21, 79–89. https://doi.org/10.2478/pomr-2014-0044

Last update:

No citation recorded.

Last update: 2025-02-09 07:01:26

No citation recorded.