skip to main content

Application of supervised machine learning and Taylor diagrams for prognostic analysis of performance and emission characteristics of biogas-powered dual-fuel diesel engine

1Vinh University of Technology Education, 117 Nguyen Viet Xuan Street, Hung Dung Ward, Vinh City, Viet Nam

2Institute of Mechanical Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

3Institute of Maritime, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

Received: 25 Jun 2024; Revised: 19 Oct 2024; Accepted: 27 Oct 2024; Published: 15 Nov 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
In the ongoing search for an alternative fuel for diesel engines, biogas is an attractive option. Biogas can be used in dual-fuel mode with diesel as pilot fuel. This work investigates the modeling of injecting strategies for a waste-derived biogas-powered dual-fuel engine. Engine performance and emissions were projected using supervised machine learning methods including random forest, lasso regression, and support vector machines (SVM). Mean Squared Error (MSE), R-squared (R²), and Mean Absolute Percentage Error (MAPE) were among the criteria used in evaluations of the models. Random Forest has shown better performance for Brake Thermal Efficiency (BTE) with a test R² of 0.9938 and a low test MAPE of 3.0741%. Random Forest once more exceeded other models with a test R² of 0.9715 and a test MAPE of 4.2242% in estimating Brake Specific Energy Consumption (BSEC). With a test R² of 0.9821 and a test MAPE of 2.5801% Random Forest emerged as the most accurate model according to carbon dioxide (CO₂) emission modeling. Analogous results for the carbon monoxide (CO) prediction model based on Random Forest obtained a test R² of 0.8339 with a test MAPE of 3.6099%. Random Forest outperformed Linear Regression with a test R² of 0.9756% and a test MAPE of 7.2056% in the case of nitrogen oxide (NOx) emissions. Random Forest showed the most constant performance overall criteria. This paper emphasizes how well machine learning models especially Random Forest can prognosticate the performance of biogas dual-fuel engines.
Fulltext View|Download
Keywords: Biogas; Alternative fuel; Supervised machine learning; Lasso regression; Random Forest; Taylor diagram

Article Metrics:

  1. Abdullah, B., Syed Muhammad, S.A.F., Shokravi, Z., Ismail, S., Kassim, K.A., Mahmood, A.N., Aziz, M.M.A., 2019. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 107, 37–50. https://doi.org/10.1016/j.rser.2019.02.018
  2. Ahmad, A., Yadav, A.K., Hasan, S., 2024a. Enhanced production of methane enriched biogas through intensified co-digestion process and its effective utilization in a biodiesel/biohydrogen fueled engine with duel injection strategies: ML-RSM based an efficient optimization approach. Int. J. Hydrogen Energy 65, 671–686. https://doi.org/10.1016/J.IJHYDENE.2024.04.059
  3. Ahmad, A., Yadav, A.K., Singh, A., Singh, D.K., 2024b. A comprehensive machine learning-coupled response surface methodology approach for predictive modeling and optimization of biogas potential in anaerobic Co-digestion of organic waste. Biomass and Bioenergy 180, 106995. https://doi.org/10.1016/j.biombioe.2023.106995
  4. Ambarita, H., 2017. Performance and emission characteristics of a small diesel engine run in dual-fuel (diesel-biogas) mode. Case Stud. Therm. Eng. 10, 179–191. https://doi.org/10.1016/j.csite.2017.06.003
  5. Ardolino, F., Cardamone, G.F., Parrillo, F., Arena, U., 2021. Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renew. Sustain. Energy Rev. 139, 110588. https://doi.org/10.1016/j.rser.2020.110588
  6. Awe, O.W., Zhao, Y., Nzihou, A., Minh, D.P., Lyczko, N., 2017. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste and Biomass Valorization 8, 267–283. https://doi.org/10.1007/s12649-016-9826-4
  7. Ayyıldız, E., Murat, M., 2024. A lasso regression-based forecasting model for daily gasoline consumption: Türkiye Case. Turkish J. Eng. 8, 162–174. https://doi.org/10.31127/TUJE.1354501
  8. Bhatt, A.N., Shrivastava, N., 2021. Application of Artificial Neural Network for Internal Combustion Engines: A State of the Art Review. Arch. Comput. Methods Eng. 1–23
  9. Bietresato, M., Calcante, A., Mazzetto, F., 2015. A neural network approach for indirectly estimating farm tractors engine performances. Fuel 143, 144–154. https://doi.org/10.1016/J.FUEL.2014.11.019
  10. Bora, B.J., Dai Tran, T., Prasad Shadangi, K., Sharma, P., Said, Z., Kalita, P., Buradi, A., Nhanh Nguyen, V., Niyas, H., Tuan Pham, M., Thanh Nguyen Le, C., Dung Tran, V., Phuong Nguyen, X., 2022. Improving combustion and emission characteristics of a biogas/biodiesel-powered dual-fuel diesel engine through trade-off analysis of operation parameters using response surface methodology. Sustain. Energy Technol. Assessments 53, 102455. https://doi.org/10.1016/j.seta.2022.102455
  11. Bora, B.J., Saha, U.K., 2016. Optimisation of injection timing and compression ratio of a raw biogas powered dual fuel diesel engine. Appl. Therm. Eng. 92, 111–121. https://doi.org/10.1016/j.applthermaleng.2015.08.111
  12. Boretti, A., 2019. Advantages and Disadvantages of Diesel Single and Dual-Fuel Engines. Front. Mech. Eng. 5. https://doi.org/10.3389/fmech.2019.00064
  13. Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324
  14. Bui, V.G., Bui, T.M.T., Hoang, A.T., Nižetić, S., Nguyen Thi, T.X., Vo, A.V., 2021. Hydrogen-Enriched Biogas Premixed Charge Combustion and Emissions in Direct Injection and Indirect Injection Diesel Dual Fueled Engines: A Comparative Study. J. Energy Resour. Technol. 143. https://doi.org/10.1115/1.4051574
  15. Bui, V.G., Bui, T.M.T., Nguyen, M.T., Bui, V.H., Do, P.N., Tran, N.A.H., Le, T.T., Hoang, A.T., 2024. Enhancing the performance of syngas-diesel dual-fuel engines by optimizing injection regimes: From comparative analysis to control strategy proposal. Process Saf. Environ. Prot. 186, 1034–1052. https://doi.org/10.1016/j.psep.2024.04.042
  16. Bui, V.G., Bui, T.M.T., Tran, V.N., Huang, Z., Hoang, A.T., Tarelko, W., Bui, V.H., Pham, X.M., Nguyen, P.Q.P., 2023. Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters. Int. J. Hydrogen Energy 48, 6722–6737. https://doi.org/10.1016/j.ijhydene.2022.09.133
  17. Bui, V.G., Tu Bui, T.M., Ong, H.C., Nižetić, S., Bui, V.H., Xuan Nguyen, T.T., Atabani, A.E., Štěpanec, L., Phu Pham, L.H., Hoang, A.T., 2022. Optimizing operation parameters of a spark-ignition engine fueled with biogas-hydrogen blend integrated into biomass-solar hybrid renewable energy system. Energy 252, 124052. https://doi.org/10.1016/j.energy.2022.124052
  18. Changxiong, L., Hu, Y., Yang, Z., Guo, H., 2023. Experimental Study of Fuel Combustion and Emission Characteristics of Marine Diesel Engines Using Advanced Fuels. Polish Marit. Res. 30, 48–58. https://doi.org/10.2478/pomr-2023-0038
  19. Cortes, C., Vapnik, V., 1995. Support-vector networks. Mach. Learn. 20, 273–297. https://doi.org/10.1007/BF00994018
  20. Cunanan, C., Tran, M.-K., Lee, Y., Kwok, S., Leung, V., Fowler, M., 2021. A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles. Clean Technol. 3, 474–489. https://doi.org/10.3390/cleantechnol3020028
  21. Czekała, W., 2022. Biogas as a Sustainable and Renewable Energy Source. pp. 201–214. https://doi.org/10.1007/978-981-16-8747-1_10
  22. Dobslaw, D., Engesser, K.-H., Störk, H., Gerl, T., 2019. Low-cost process for emission abatement of biogas internal combustion engines. J. Clean. Prod. 227, 1079–1092. https://doi.org/10.1016/j.jclepro.2019.04.258
  23. E, J., Pham, M., Zhao, D., Deng, Y., Le, D., Zuo, W., Zhu, H., Liu, T., Peng, Q., Zhang, Z., 2017. Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review. Renew. Sustain. Energy Rev. 80, 620–647. https://doi.org/10.1016/j.rser.2017.05.250
  24. Elvidge, S., Angling, M.J., Nava, B., 2014. On the use of modified Taylor diagrams to compare ionospheric assimilation models. Radio Sci. 49, 737–745. https://doi.org/10.1002/2014RS005435
  25. Feroskhan, M., Ismail, S., 2017. A review on the purification and use of biogas in compression ignition engines. Int. J. Automot. Mech. Eng. 14, 4383–4400. https://doi.org/10.15282/ijame.14.3.2017.1.0348
  26. Feroskhan, M., Ismail, S., Reddy, M.G., Sai Teja, A., 2018. Effects of charge preheating on the performance of a biogas-diesel dual fuel CI engine. Eng. Sci. Technol. an Int. J. 21, 330–337. https://doi.org/10.1016/j.jestch.2018.04.001
  27. Fransiscus, Y., Simangunsong, T.L., 2021. Anaerobic Digestion of Industrial Tempeh Wastewater with Sludge from Cow Manure Biogas Digester as Inoculum: Effect of F/M Ratio on the Methane Production. Int. J. Adv. Sci. Eng. Inf. Technol. 11, 1007–1013. https://doi.org/10.18517/ijaseit.11.3.11846
  28. García-Nieto, P.J., García-Gonzalo, E., José, •, Paredes-Sá Nchez, P., n.d. Prediction of the critical temperature of a superconductor by using the WOA/MARS, Ridge, Lasso and Elastic-net machine learning techniques. Neural Comput. Appl. 33. https://doi.org/10.1007/s00521-021-06304-z
  29. Gholizadeh, M., Jamei, M., Ahmadianfar, I., Pourrajab, R., 2020. Prediction of nanofluids viscosity using random forest (RF) approach. Chemom. Intell. Lab. Syst. 201, 104010. https://doi.org/10.1016/J.CHEMOLAB.2020.104010
  30. Goyal, D., Goyal, T., Mahla, S.K., Goga, G., Dhir, A., Balasubramanian, D., Hoang, A.T., Wae-Hayee, M., Josephin, J.S.F., Sonthalia, A., Varuvel, E.G., Brindhadevi, K., 2023. Application of Taguchi design in optimization of performance and emissions characteristics of n-butanol/diesel/biogas under dual fuel mode. Fuel 338, 127246. https://doi.org/10.1016/j.fuel.2022.127246
  31. Hao, D., Mehra, R.K., Luo, S., Nie, Z., Ren, X., Fanhua, M., 2020. Experimental study of hydrogen enriched compressed natural gas (HCNG) engine and application of support vector machine (SVM) on prediction of engine performance at specific condition. Int. J. Hydrogen Energy 45, 5309–5325. https://doi.org/10.1016/j.ijhydene.2019.04.039
  32. Haque, R., Quek, A., Ting, C.-Y., Goh, H.-N., Hasan, M.R., 2024. Classification Techniques Using Machine Learning for Graduate Student Employability Predictions. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 45–56. https://doi.org/10.18517/ijaseit.14.1.19549
  33. Hidayanti, F., Wati, E.K., Sumardi, A.H., 2021. Implementation of Automatic Monitoring and Control System in Balloon Digester Type’s Biogas Plant from Tofu Waste Using Ultrasonic Distance Sensor. Int. J. Adv. Sci. Eng. Inf. Technol. 11, 1463–1467. https://doi.org/10.18517/ijaseit.11.4.11004
  34. Hoang, A.T., 2021. Combustion behavior, performance and emission characteristics of diesel engine fuelled with biodiesel containing cerium oxide nanoparticles: A review. Fuel Process. Technol. 218, 106840. https://doi.org/10.1016/j.fuproc.2021.106840
  35. Hoang, A.T., 2018. Waste heat recovery from diesel engines based on Organic Rankine Cycle. Appl. Energy 231, 138–166. https://doi.org/10.1016/j.apenergy.2018.09.022
  36. Hoang, A.T., Goldfarb, J.L., Foley, A.M., Lichtfouse, E., Kumar, M., Xiao, L., Ahmed, S.F., Said, Z., Luque, R., Bui, V.G., Nguyen, X.P., 2022. Production of biochar from crop residues and its application for anaerobic digestion. Bioresour. Technol. 363, 127970. https://doi.org/10.1016/j.biortech.2022.127970
  37. Hoang, A.T., Pandey, A., Martinez De Osés, F.J., Chen, W.-H., Said, Z., Ng, K.H., Ağbulut, Ü., Tarełko, W., Ölçer, A.I., Nguyen, X.P., 2023. Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renew. Sustain. Energy Rev. 188, 113790. https://doi.org/10.1016/j.rser.2023.113790
  38. Jamei, M., Pourrajab, R., Ahmadianfar, I., Noghrehabadi, A., 2020. Accurate prediction of thermal conductivity of ethylene glycol-based hybrid nanofluids using artificial intelligence techniques. Int. Commun. Heat Mass Transf. 116, 104624. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2020.104624
  39. Jamei, M., Sharma, P., Ali, M., Bora, B.J., Malik, A., Paramasivam, P., Farooque, A.A., Abdulla, S., 2024. Application of an explainable glass-box machine learning approach for prognostic analysis of a biogas-powered small agriculture engine. Energy 288, 129862. https://doi.org/10.1016/j.energy.2023.129862
  40. Kanti, P.K., Sharma, P., Maiya, M.P., Sharma, K.V., 2023. The stability and thermophysical properties of Al2O3-graphene oxide hybrid nanofluids for solar energy applications: Application of robust autoregressive modern machine learning technique. Sol. Energy Mater. Sol. Cells 253, 112207. https://doi.org/10.1016/j.solmat.2023.112207
  41. Kapoor, R., Ghosh, P., Tyagi, B., Vijay, V.K., Vijay, V., Thakur, I.S., Kamyab, H., Nguyen, D.D., Kumar, A., 2020. Advances in biogas valorization and utilization systems: A comprehensive review. J. Clean. Prod. 273, 123052
  42. Karne, H., Mahajan, U., Ketkar, U., Kohade, A., Khadilkar, P., Mishra, A., 2023. A review on biogas upgradation systems. Mater. Today Proc. 72, 775–786. https://doi.org/10.1016/J.MATPR.2022.09.015
  43. Khayum, N., Anbarasu, S., Murugan, S., 2020. Combined effect of fuel injecting timing and nozzle opening pressure of a biogas-biodiesel fuelled diesel engine. Fuel 262, 116505. https://doi.org/10.1016/j.fuel.2019.116505
  44. Kriaučiūnas, D., Pukalskas, S., Rimkus, A., Barta, D., 2021. Analysis of the Influence of CO2 Concentration on a Spark Ignition Engine Fueled with Biogas. Appl. Sci. 11, 6379. https://doi.org/10.3390/app11146379
  45. Kumar Kanti, P., Sharma, P., Sharma, K.V., Maiya, M.P., 2023. The effect of pH on stability and thermal performance of graphene oxide and copper oxide hybrid nanofluids for heat transfer applications: Application of novel machine learning technique. J. Energy Chem. 82, 359–374. https://doi.org/10.1016/j.jechem.2023.04.001
  46. Li, Y., Yang, R., Wang, X., Zhu, J., Song, N., 2023. Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration. Sustain. 2023, Vol. 15, Page 9354 15, 9354. https://doi.org/10.3390/SU15129354
  47. Lohani, S.P., Dhungana, B., Horn, H., Khatiwada, D., 2021. Small-scale biogas technology and clean cooking fuel: Assessing the potential and links with SDGs in low-income countries – A case study of Nepal. Sustain. Energy Technol. Assessments 46, 101301. https://doi.org/10.1016/J.SETA.2021.101301
  48. Mahla, S.K., Singla, V., Sandhu, S.S., Dhir, A., 2018. Studies on biogas-fuelled compression ignition engine under dual fuel mode. Environ. Sci. Pollut. Res. 25, 9722–9729. https://doi.org/10.1007/S11356-018-1247-4/METRICS
  49. Mao, C., Feng, Y., Wang, X., Ren, G., 2015. Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032
  50. Meenal, R., Selvakumar, A.I., 2018. Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters. Renew. Energy 121, 324–343. https://doi.org/10.1016/J.RENENE.2017.12.005
  51. Meng, X., Zhou, Y., Yang, T., Long, W., Bi, M., Tian, J., Lee, C.F.F., 2020. An experimental investigation of a dual-fuel engine by using bio-fuel as the additive. Renew. Energy 147, 2238–2249. https://doi.org/10.1016/J.RENENE.2019.10.023
  52. Mohammad, A., Rezaei, R., Hayduk, C., Delebinski, T., Shahpouri, S., Shahbakhti, M., 2022. Physical-oriented and machine learning-based emission modeling in a diesel compression ignition engine: Dimensionality reduction and regression. 24, 904–918. https://doi.org/10.1177/14680874211070736
  53. Mohite, A., Bora, B.J., Sharma, P., Sarıdemir, S., Mallick, D., Sunil, S., Ağbulut, Ü., 2024. Performance enhancement and emission control through adjustment of operating parameters of a biogas-biodiesel dual fuel diesel engine: An experimental and statistical study with biogas as a hydrogen carrier. Int. J. Hydrogen Energy 52, 752–764
  54. Naghavi, R., Abdoli, M.A., Karbasi, A., Adl, M., 2020. Improving the Quantity and Quality of Biogas Production in Tehran Anaerobic Digestion Power Plant by Application of Materials Recirculation Technique. Int. J. Renew. Energy Dev. 9, 167–175. https://doi.org/10.14710/ijred.9.2.167-175
  55. Najafi, G., Ghobadian, B., Moosavian, A., Yusaf, T., Mamat, R., Kettner, M., Azmi, W.H., 2016. SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels. Appl. Therm. Eng. 95, 186–203. https://doi.org/10.1016/j.applthermaleng.2015.11.009
  56. Nam, D., Jafrin, A., Johnson, T., 2024. A Simulation Study on a Premixed-charge Compression Ignition Mode-based Engine Using a Blend of Biodiesel / Diesel Fuel under a Split Injection Strategy. Int. J. Adv. Sci. Eng. Inf. Technol. 14, 451–471
  57. Nguyen-Thi, T.X., Bui, T.M.T., 2023. Effects of Injection Strategies on Mixture Formation and Combustion in a Spark-Ignition Engine Fueled with Syngas-Biogas-Hydrogen. Int. J. Renew. Energy Dev. 12, 118–128. https://doi.org/10.14710/ijred.2023.49368
  58. Nguyen, V.N., Tarełko, W., Sharma, P., El-Shafay, A.S., Chen, W.-H., Nguyen, P.Q.P., Nguyen, X.P., Hoang, A.T., 2024. Potential of Explainable Artificial Intelligence in Advancing Renewable Energy: Challenges and Prospects. Energy & Fuels 38, 1692–1712. https://doi.org/10.1021/acs.energyfuels.3c04343
  59. Nisa, Z.K., Pradipta, A.G., Sholikah, L.N., Pratama, B.F., Prihanantya, A.S., Ngadisih, Susanto, S., Arif, S.S., 2023. Recognition of Agricultural Land-Use Change with Machine Learning-Based for Regional Food Security Assessment in Kulon Progo Plains Area. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 54–61. https://doi.org/10.18517/ijaseit.13.1.16550
  60. Onukwuli, D.O., Esonye, C., Ofoefule, A.U., Eyisi, R., 2021. Comparative analysis of the application of artificial neural network-genetic algorithm and response surface methods-desirability function for predicting the optimal conditions for biodiesel synthesis from chrysophyllum albidum seed oil. J. Taiwan Inst. Chem. Eng. 125, 153–167. https://doi.org/10.1016/J.JTICE.2021.06.012
  61. Parsaee, M., Kiani Deh Kiani, M., Karimi, K., 2019. A review of biogas production from sugarcane vinasse. Biomass and Bioenergy 122, 117–125. https://doi.org/10.1016/J.BIOMBIOE.2019.01.034
  62. Patnaik, S., Khatri, N., Rene, E.R., 2024. Artificial neural networks-based performance and emission characteristics prediction of compression ignition engines powered by blends of biodiesel derived from waste cooking oil. Fuel 370, 131806. https://doi.org/10.1016/J.FUEL.2024.131806
  63. Pisner, D.A., Schnyer, D.M., 2020. Support vector machine, in: Machine Learning. Elsevier, pp. 101–121. https://doi.org/10.1016/B978-0-12-815739-8.00006-7
  64. Prabhu, A.V., Avinash, A., Brindhadevi, K., Pugazhendhi, A., 2021. Performance and emission evaluation of dual fuel CI engine using preheated biogas-air mixture. Sci. Total Environ. 754, 142389. https://doi.org/10.1016/J.SCITOTENV.2020.142389
  65. Puri, D., Nalbalwar, S., Nandgaonkar, A., Rajput, J., Wagh, A., 2023. Identification of Alzheimer’s Disease Using Novel Dual Decomposition Technique and Machine Learning Algorithms from EEG Signals. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 658–665. https://doi.org/10.18517/ijaseit.13.2.18252
  66. Rahman, H., Nehemia, A., Astuti, H.P., 2023. Investigating the potential of avocado seeds for bioethanol production: A study on boiled water delignification pretreatment. Int. J. Renew. Energy Dev. 12(4). https://doi.org/10.14710/ijred.2023.52532
  67. Ramalingam, K., Vellaiyan, S., Venkatesan, E.P., Khan, S.A., Mahmoud, Z., Saleel, C.A., 2023. Challenges and Opportunities of Low Viscous Biofuel─A Prospective Review. ACS Omega 8, 16545–16560. https://doi.org/10.1021/acsomega.3c00387
  68. Rao, A., Liu, Y., Ma, F., 2022. Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’ mechanism, support vector machine and regression correlation. Fuel 318, 123577. https://doi.org/10.1016/j.fuel.2022.123577
  69. Rocha-Meneses, L., Luna-delRisco, M., González, C.A., Moncada, S.V., Moreno, A., Sierra-Del Rio, J., Castillo-Meza, L.E., 2023. An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia. Energies 2023, Vol. 16, Page 5901 16, 5901. https://doi.org/10.3390/EN16165901
  70. Runyowa, N.T., Fourie, W., 2021. Responsible Leadership and the Implementation of SDG 7: The Case of the UNDP Botswana Biogas Project. Sustain. Dev. Goals Ser. Part F2673, 91–105. https://doi.org/10.1007/978-3-030-70952-5_7
  71. Sahoo, B.B., Sahoo, N., Saha, U.K., 2009. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—A critical review. Renew. Sustain. Energy Rev. 13, 1151–1184. https://doi.org/10.1016/j.rser.2008.08.003
  72. Said, Z., Sharma, P., Bora, B.J., Bui, T.A.E., Nguyen, D.T., Dinh, X.T., Nguyen, X.P., 2022. Modeling-optimization of performance and emission characteristics of dual-fuel engine powered with pilot diesel and agricultural-food waste-derived biogas. Int. J. Hydrogen Energy
  73. Sakthivel, R., Ramesh, K., Purnachandran, R., Mohamed Shameer, P., 2018. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew. Sustain. Energy Rev. 82, 2970–2992. https://doi.org/10.1016/j.rser.2017.10.037
  74. Schonlau, M., Zou, R.Y., 2020. The random forest algorithm for statistical learning. Stata J. Promot. Commun. Stat. Stata 20, 3–29. https://doi.org/10.1177/1536867X20909688
  75. Serbin, S., Burunsuz, K., Chen, D., Kowalski, J., 2022. Investigation of the Characteristics of a Low-Emission Gas Turbine Combustion Chamber Operating on a Mixture of Natural Gas and Hydrogen. Polish Marit. Res. 29, 64–76. https://doi.org/10.2478/pomr-2022-0018
  76. Sharma, H., Mahla, S.K., Dhir, A., 2022. Effect of utilization of hydrogen-rich reformed biogas on the performance and emission characteristics of common rail diesel engine. Int. J. Hydrogen Energy 47, 10409–10419. https://doi.org/10.1016/j.ijhydene.2022.01.073
  77. Sharma, P.;, Bora, B.J.A., Sharma, Prabhakar, Bora, B.J., 2022. A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries. Batter. 13(9), 13. https://doi.org/10.3390/BATTERIES9010013
  78. Sharma, P., Balasubramanian, D., Thanh Khai, C., Papla Venugopal, I., Alruqi, M., Josephin JS, F., Sonthalia, A., Geo Varuvel, E., Khalife, E., Ravikumar, R., Wae-Hayee, M., 2023a. Enhancing the performance of renewable biogas powered engine employing oxyhydrogen: Optimization with desirability and D-optimal design. Fuel 341, 127575. https://doi.org/10.1016/j.fuel.2023.127575
  79. Sharma, P., Bora, B.J., 2023. Modeling and optimization of a CI engine running on producer gas fortified with oxyhydrogen. Energy 270, 126909. https://doi.org/10.1016/j.energy.2023.126909
  80. Sharma, P., Jain, A., Bora, B.J., Balakrishnan, D., Show, P.L., Ramaraj, R., Ağbulut, Ü., Khoo, K.S., 2023b. Application of modern approaches to the synthesis of biohydrogen from organic waste. Int. J. Hydrogen Energy 48, 21189–21213. https://doi.org/10.1016/j.ijhydene.2023.03.029
  81. Sharma, P., Sahoo, B.B., Said, Z., Hadiyanto, H., Nguyen, X.P., Nižetić, S., Huang, Z., Hoang, A.T., Li, C., 2023c. Application of machine learning and Box-Behnken design in optimizing engine characteristics operated with a dual-fuel mode of algal biodiesel and waste-derived biogas. Int. J. Hydrogen Energy 48, 6738–6760. https://doi.org/10.1016/j.ijhydene.2022.04.152
  82. Sharma, P., Said, Z., Kumar, A., Nižetić, S., Pandey, A., Hoang, A.T., Huang, Z., Afzal, A., Li, C., Le, A.T., Nguyen, X.P., Tran, V.D., 2022. Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy & Fuels 36, 6626–6658. https://doi.org/10.1021/acs.energyfuels.2c01006
  83. Sharmila, V.G., Shanmugavel, S.P., Banu, J.R., 2024. A review on emerging technologies and machine learning approaches for sustainable production of biofuel from biomass waste. Biomass and Bioenergy 180, 106997. https://doi.org/10.1016/j.biombioe.2023.106997
  84. Shi, J., Lee, W.-J., Liu, Y., Yang, Y., Wang, P., 2012. Forecasting Power Output of Photovoltaic Systems Based on Weather Classification and Support Vector Machines. IEEE Trans. Ind. Appl. 48, 1064–1069. https://doi.org/10.1109/TIA.2012.2190816
  85. Simão, M.L., Videiro, P.M., Silva, P.B.A., de Freitas Assad, L.P., Sagrilo, L.V.S., 2020. Application of Taylor diagram in the evaluation of joint environmental distributions’ performances. Mar. Syst. Ocean Technol. 15, 151–159. https://doi.org/10.1007/s40868-020-00081-5
  86. Tanveer, M., Rajani, T., Rastogi, R., Shao, Y.H., Ganaie, M.A., 2022. Comprehensive review on twin support vector machines. Ann. Oper. Res. https://doi.org/10.1007/s10479-022-04575-w
  87. Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106, 7183–7192
  88. The-Thanh, L., Tien-Long, B., The-Van, T., Duc-Toan, N., 2019. A study on a deep-drawing process with two shaping states for a fuel-filter cup using combined simulation and experiment. Adv. Mech. Eng. 11, 1–11. https://doi.org/10.1177/1687814019872674
  89. Tira, H.S., Tsolakis, A., Turner, D., Herreros, J.M., Dearn, K.D., Theinnoi, K., Wyszynski, M.L., 2014. Influence of Fuel Properties, Hydrogen, and Reformate Additions on Diesel-Biogas Dual-Fueled Engine. J. Energy Eng. 140. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000173
  90. Tracking SDG 7 – The Energy Progress Report 2022 [WWW Document], n.d
  91. Usman, M., Hussain, H., Riaz, F., Irshad, M., Bashir, R., Shah, M.H., Zafar, A.A., Bashir, U., Kalam, M.A., Mujtaba, M.A., Soudagar, M.E.M., 2021. Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine. Sustain. 13, 9373. https://doi.org/10.3390/SU13169373
  92. Vasan, V., Sridharan, N.V., Feroskhan, M., Vaithiyanathan, S., Subramanian, B., Tsai, P.C., Lin, Y.C., Lay, C.H., Wang, C.T., Ponnusamy, V.K., 2024. Biogas production and its utilization in internal combustion engines - A review. Process Saf. Environ. Prot. 186, 518–539. https://doi.org/10.1016/J.PSEP.2024.04.014
  93. Verma, S., Das, L.M., Bhatti, S.S., Kaushik, S.C., 2017. A comparative exergetic performance and emission analysis of pilot diesel dual-fuel engine with biogas, CNG and hydrogen as main fuels. Energy Convers. Manag. 151, 764–777. https://doi.org/10.1016/j.enconman.2017.09.035
  94. Veza, I., Afzal, A., Mujtaba, M.A., Tuan Hoang, A., Balasubramanian, D., Sekar, M., Fattah, I.M.R., Soudagar, M.E.M., EL-Seesy, A.I., Djamari, D.W., Hananto, A.L., Putra, N.R., Tamaldin, N., 2022a. Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alexandria Eng. J. 61, 8363–8391. https://doi.org/10.1016/j.aej.2022.01.072
  95. Veza, I., Karaoglan, A.D., Ileri, E., Kaulani, S.A., Tamaldin, N., Latiff, Z.A., Muhamad Said, M.F., Hoang, A.T., Yatish, K.V., Idris, M., 2022b. Grasshopper optimization algorithm for diesel engine fuelled with ethanol-biodiesel-diesel blends. Case Stud. Therm. Eng. 31, 101817. https://doi.org/10.1016/j.csite.2022.101817
  96. Walker, A.M., Cliff, A., Romero, J., Shah, M.B., Jones, P., Felipe Machado Gazolla, J.G., Jacobson, D.A., Kainer, D., 2022. Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data. Comput. Struct. Biotechnol. J. 20, 3372–3386. https://doi.org/10.1016/j.csbj.2022.06.037
  97. Yu, F.W., Ho, W.T., Wong, C.F.J., 2024. Predicting and decarbonizing carbon emissions from building energy use in Hong Kong: A LASSO regression approach. Energy Sustain. Dev. 78, 101374. https://doi.org/10.1016/J.ESD.2023.101374
  98. Zhao, R., Xu, L., Su, X., Feng, S., Li, C., Tan, Q., Wang, Z., 2020. A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines. Polish Marit. Res. 27, 80–90. https://doi.org/10.2478/pomr-2020-0068

Last update:

No citation recorded.

Last update: 2024-12-10 00:11:09

No citation recorded.