skip to main content

Characterization of a geothermal system in the shallow structure of Seulawah volcano, Indonesia, using transient electromagnetic methods

1Geophysical Engineering Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia

2Geological Engineering, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia

3Geophysical Engineering Department, Institut Teknologi Sumatera, Lampung, Indonesia

4 Chemistry Department, Universitas Syiah Kuala, Darussalam-Banda Aceh 23111, Indonesia

5 Energy and Mineral Resources Agency of Aceh Province, Banda Aceh 23114, Indonesia

6 Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Indonesia

7 PT. Elnusa Tbk, Simatupang, Graha Elnusa, Jakarta Selatan 12560, Indonesia

8 Department of Geology, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Federal Territory Malaysia, Malaysia

View all affiliations
Received: 15 Oct 2024; Revised: 16 Feb 2025; Accepted: 19 Mar 2025; Available online: 27 Mar 2025; Published: 1 May 2025.
Editor(s): Sohail Nadeem
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Seulawah volcano, located in Sumatra, Indonesia, is renowned for its geothermal potential, a crucial source of cleaner energy for Indonesia’s future growth and security. Available studies of Seulawah volcano primarily focus on its general geological, geochemical, and regional characteristics, with limited research on its shallow subsurface conditions. This study aimed to fill this research gap and enhance our understanding of the geothermal system of Seulawah volcano. There are two objectives of this study: (1) to conduct a transient electromagnetic (TEM) survey across the study area and (2) to better visualize and characterize the shallow subsurface conditions of the geothermal system of Seulawah volcano. The TEM method, which employed 60 stations (with distances between stations ranging from 0.5 to 1 km) and intersected several geothermal manifestations as well as local and regional faults, was used to achieve the objectives of this study. The Occam algorithm was applied for 1D inversion of TEM data, which was then validated using magnetotelluric data. The results of this study indicate that the geothermal system of Seulawah volcano has the potential to generate up to 230 Mwe of electrical energy. Moreover, the shallow depth (<200m) of Seulawah volcano is dominated by a resistive zone, which is interpreted to be related to the basaltic rocks of the Lamteuba Formation. The reservoir layer is located at depths of 200–500 m, exhibiting moderate resistivity values of >10 Ωm. At a depth of 500 m, a conductive layer with resistivity values <10 Ωm was observed, interpreted as a clay cap where fluids from the reservoir layer accumulate. Validation with magnetotelluric data shows results consistent with the TEM data, confirming that the findings of this study are reliable. These findings contribute to a deeper understanding of the geothermal system of Seulawah volcano and are expected to support the development of greener, renewable energy sources for Indonesia.

Fulltext View|Download
Keywords: Transient electromagnetic; Seulawah volcano; geothermal; geochemical analysis

Article Metrics:

  1. Abdullah, F., Yanis, M., Razi, M. H., Zainal, M., & Ismail, N. (2022). Subsurface mapping of fault structure in the Weh island by using a 3D density of global gravity. International Journal of Geomate, 23(96), 121–128. https://doi.org/10.21660/2022.96.3354
  2. Arnórsson, S., Gunnlaugsson, E., & Svavarsson, H. (1983). The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochimica et Cosmochimica Acta, 47(3), 567–577. https://doi.org/10.1016/0016-7037(83)90278-8
  3. Bennett, J. D., Bridge, N. R., Djunuddin, A., Ghazali, S. A., Jeffery, D. H., Keats, W., Rock, N. M. S., Thompson, S. J., & Whandoyo, R. (1981). The Geology of the Banda Aceh Quadrangle, Sumatra-Geological Research and Development Centre, Bandung. Explanatory Note, 19
  4. Chambefort, I., Buscarlet, E., Wallis, I. C., Sewell, S., & Wilmarth, M. (2016). Ngatamariki Geothermal Field, New Zealand: Geology, geophysics, chemistry and conceptual model. Geothermics, 59, 266–280. https://doi.org/10.1016/j.geothermics.2015.07.011
  5. Chave, A. D., & Jones, A. G. (2012). The magnetotelluric method: Theory and practice. In The Magnetotelluric Method: Theory and Practice. https://doi.org/10.1017/CBO9781139020138
  6. Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52(3), 289–300. https://doi.org/10.1190/1.1442303
  7. Demissie, Y. (2005). Transient Electromagnetic Resistivity Survey at the Geysir Geothermal Field South Iceland. World Geothermal Congress 2005, April
  8. Erfurt-Cooper, P. (2011). Geotourism in volcanic and geothermal environments: Playing with fire? Geoheritage, 3(3), 187–193. https://doi.org/10.1007/s12371-010-0025-6
  9. Fitterman, D. V, & Stewart, M. T. (1986). Transient electromagnetic sounding for groundwater. Geophysics, 51(4), 995–1005
  10. Fournier, R. O. (1979). A revised equation for the Na/K geothermometer. Transactions of the Geothermal Resources Council, 3, 221–224
  11. Giggenbach, W. F. (1988). Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochimica et Cosmochimica Acta, 52(12), 2749–2765. https://doi.org/10.1016/0016-7037(88)90143-3
  12. Hartono, D., Hastuti, S. H., Halimatussadiah, A., Saraswati, A., Mita, A. F., & Indriani, V. (2020). Comparing the impacts of fossil and renewable energy investments in Indonesia: A simple general equilibrium analysis. Heliyon, 6(6). https://doi.org/10.1016/j.heliyon.2020.e04120
  13. Hochstein, M. P., & Sudarman, S. (1993). Geothermal resources of Sumatra. Geothermics, 22(3), 181–200. https://doi.org/10.1016/0375-6505(93)90042-L
  14. Hochstein, M. P., & Sudarman, S. (2008). History of geothermal exploration in Indonesia from 1970 to 2000. Geothermics, 37(3), 220–266. https://doi.org/10.1016/j.geothermics.2008.01.001
  15. Hördt, A., Jödicke, H., Strack, K. ‐M, Vozoff, K., & Wolfgram, P. A. (1992). Inversion of long‐offset TEM soundings near the borehole Münsterland 1, Germany, and comparison with MT measurements. Geophysical Journal International, 108(3), 930–940. https://doi.org/10.1111/j.1365-246X.1992.tb03481.x
  16. Huenges, E. (2010). Geothermal energy systems : esploration, development, and utilization (P. Ledru (ed.)). John Wiley & Sons
  17. Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G. M., Marwan, M., & Mahlia, T. M. I. (2019). Geochemistry exploration and geothermometry application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia. Energies, 12(23). https://doi.org/10.3390/en12234442
  18. Ismail, N., Yanis, M., Idris, S., Abdullah, F., & Hanafiah, B. (2017). Near-Surface Fault Structures of the Seulimuem Segment Based on Electrical Resistivity Model. Journal of Physics: Conference Series, 846(1), 012016. https://doi.org/10.1088/1742-6596/846/1/012016
  19. Ledo, J., García-Merino, M., Larnier, H., Slezak, K., Piña-Varas, P., Marcuello, A., Queralt, P., Pérez, N. M., Schmincke, H. U., & Sumita, M. (2021). 3D electrical resistivity of Gran Canaria island using magnetotelluric data. Geothermics, 89. https://doi.org/10.1016/j.geothermics.2020.101945
  20. Li, H., Xue, G. qiang, Zhou, N. nan, & Chen, W. ying. (2015). Appraisal of an Array TEM Method in Detecting a Mined-Out Area Beneath a Conductive Layer. Pure and Applied Geophysics, 172(10), 2917–2929. https://doi.org/10.1007/s00024-015-1075-0
  21. Lichoro, C. M., Árnason, K., & Cumming, W. (2017). Resistivity imaging of geothermal resources in northern Kenya rift by joint 1D inversion of MT and TEM data. Geothermics, 68, 20–32. https://doi.org/10.1016/J.GEOTHERMICS.2017.02.006
  22. Marwan, Idroes, R., Yanis, M., Idroes, G. M., & Syahriza. (2021). A Low-Cost UAV Based Application for Identify and Mapping A Geothermal Feature in Ie Jue Manifestation, Seulawah Volcano, Indonesia. International Journal of Geomate, 20(80), 135–142. https://doi.org/10.21660/2021.80.j2044
  23. Marwan, M., Asrillah, Yanis, M., & Furumoto, Y. (2019). Lithological identification of devastated area by Pidie Jaya earthquake through poisson’s ratio analysis. International Journal of GEOMATE, 17(63), 210–216. https://doi.org/10.21660/2019.63.77489
  24. Marwan, M., Yanis, M., Nugraha, G. S., Zainal, M., Arahman, N., Idroes, R., Dharma, D. B., Saputra, D., & Gunawan, P. (2021). Mapping of Fault and Hydrothermal System beneath the Seulawah Volcano Inferred from a Magnetotellurics Structure. Energies, 14(19), 6091. https://doi.org/10.3390/en14196091
  25. Marwan, Syukri, M., Idroes, R., & Ismail, N. (2019). Deep and shallow structures of geothermal Seulawah Agam based on electromagnetic and magnetic data. International Journal of GEOMATE, 16(53), 141–147. https://doi.org/10.21660/2019.53.17214
  26. Marwan, Yanis, M., Idroes, R., & Ismail, N. (2019). 2D inversion and static shift of MT and TEM data for imaging the geothermal resources of Seulawah Agam Volcano, Indonesia. International Journal of GEOMATE, 17(62). https://doi.org/10.21660/2019.62.11724
  27. Marwan, Yanis, M., Muzakir, & Nugraha, G. S. (2020). Application of QR codes as a new communication technology and interactive tourist guide in Jaboi, Sabang. IOP Conference Series: Materials Science and Engineering, 796(1), 012025. https://doi.org/10.1088/1757-899X/796/1/012025
  28. McNeill, J. D. (1980). Applications of transient electromagnetic techniques. Geonics Limited Missasauga, ON, Canada
  29. Mohan, K., Chaudhary, P., Kumar, G. P., Kothyari, G. C., Choudhary, V., Nagar, M., Patel, P., Gandhi, D., Kushwaha, D., & Rastogi, B. K. (2018). Magnetotelluric Investigations in Tuwa-Godhra Region, Gujarat (India). Pure and Applied Geophysics, 175(10), 3569–3589. https://doi.org/10.1007/s00024-018-1883-0
  30. Montecinos-Cuadros, D., Díaz, D., Yogeshwar, P., & Munoz-Saez, C. (2021). Characterization of the shallow structure of El Tatio geothermal field in the Central Andes, Chile using transient electromagnetics. Journal of Volcanology and Geothermal Research, 412, 107198. https://doi.org/10.1016/j.jvolgeores.2021.107198
  31. Moya, D., Aldás, C., & Kaparaju, P. (2018). Geothermal energy: Power plant technology and direct heat applications. In Renewable and Sustainable Energy Reviews (Vol. 94, pp. 889–901). https://doi.org/10.1016/j.rser.2018.06.047
  32. Nasruddin, Idrus Alhamid, M., Daud, Y., Surachman, A., Sugiyono, A., Aditya, H. B., & Mahlia, T. M. I. (2016). Potential of geothermal energy for electricity generation in Indonesia: A review. In Renewable and Sustainable Energy Reviews (Vol. 53, pp. 733–740). https://doi.org/10.1016/j.rser.2015.09.032
  33. Nugraha, G. S., Ebubakar, M., Alawiyah, S., & Sutopo. (2016). Geological Structure Causes of the Rise in Burni Telong Manifestations, Bener Meriah, Central Aceh, Indonesia. Electronic journal of geothecinal engineering, 21(1), 201–210
  34. Peacock, J. R., Mangan, M. T., McPhee, D., & Wannamaker, P. E. (2016). Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics. Geophysical Research Letters, 43(15), 7953–7962. https://doi.org/10.1002/2016GL069263
  35. Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6), 914–928. https://doi.org/10.1029/TR025I006P00914
  36. Purnomo, B. J., & Pichler, T. (2014). Geothermal systems on the island of Java, Indonesia. Journal of Volcanology and Geothermal Research, 285, 47–59. https://doi.org/10.1016/j.jvolgeores.2014.08.004
  37. Rizal, M., Ismail, N., Yanis, M., Muzakir, & Surbakti, M. S. (2019). The 2D resistivity modelling on north sumatran fault structure by using magnetotelluric data. IOP Conference Series: Earth and Environmental Science, 364(1). https://doi.org/10.1088/1755-1315/364/1/012036
  38. Ruiz-Aguilar, D., Tezkan, B., & Arango-Galván, C. (2018). Exploration of the Aquifer of San Felipe Geothermal Area (Mexico) by Spatially Constrained Inversion of Transient Electromagnetic Data. Journal of Environmental and Engineering Geophysics, 23(2), 197–209. https://doi.org/10.2113/JEEG23.2.197
  39. Ruiz-Aguilar, D., Tezkan, B., Arango-Galván, C., & Romo-Jones, J. M. (2020). 3D inversion of MT data from northern Mexico for geothermal exploration using TEM data as constraints. Journal of Applied Geophysics, 172. https://doi.org/10.1016/j.jappgeo.2019.103914
  40. Ruthsatz, A. D., Sarmiento Flores, A., Diaz, D., Reinoso, P. S., Herrera, C., & Brasse, H. (2018). Joint TEM and MT aquifer study in the Atacama Desert, North Chile. Journal of Applied Geophysics, 153, 7–16. https://doi.org/10.1016/J.JAPPGEO.2018.04.002
  41. Rybach, L. (2003). Geothermal energy: Sustainability and the environment. Geothermics, 32(4), 463–470. https://doi.org/10.1016/S0375-6505(03)00057-9
  42. Saptadji, N. M. (2001). Teknik Panasbumi. Penerbit ITB
  43. Sieh, K., & Natawidjaja, D. (2000). Neotectonics of the Sumatran fault, Indonesia. Journal of Geophysical Research: Solid Earth, 105(B12), 28295–28326. https://doi.org/10.1029/2000jb900120
  44. Siripunvaraporn, W., & Egbert, G. (2009). WSINV3DMT: Vertical magnetic field transfer function inversion and parallel implementation. Physics of the Earth and Planetary Interiors, 173(3–4), 317–329. https://doi.org/10.1016/j.pepi.2009.01.013
  45. Spies, B. R. (1989). Depth of investigation in electromagnetic sounding methods. Geophysics, 54(7), 872–888. https://doi.org/10.1190/1.1442716
  46. Strack, K. M. (1992). Exploration with deep transient electromagnetics (Vol.373). Elsevier
  47. Telford, M. ., Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied Geophysics. In Applied Geophysics (Vol. 127, Issue 3212). Cambridge University Press. USA. https://doi.org/10.1017/cbo9781139167932
  48. Tonani, F. B. (1980). Some remarks on the application of geochemical techniques in geothermal exploration. In Advances in European Geothermal Research (pp. 428–443). Springer
  49. Vozoff, K. (1980). Electromagnetic methods in applied geophysics. Geophysical Surveys, 4(1–2), 9–29. https://doi.org/10.1007/BF01452955
  50. Wang, G. ling, Zhang, W., Ma, F., Lin, W. jing, Liang, J. yun, & Zhu, X. (2018). Overview on hydrothermal and hot dry rock researches in China. China Geology, 1(2), 273–285. https://doi.org/10.31035/cg2018021
  51. Yanis, M., A Bakar, M., & Ismail, N. (2017, September). The Use of VLF-EM and Electromagnetic Induction Methods for Mapping the Ancient Fort of Kuta Lubok as Tsunami Heritage i. 23rd European Meeting of Environmental and Engineering Geophysics. https://doi.org/10.3997/2214-4609.201701996
  52. Yanis, M., Abdullah, F., Zaini, N., & Ismail, N. (2021). The northernmost part of the Great Sumatran Fault map and images derived from gravity anomaly. Acta Geophysica, 69(3), 795–807. https://doi.org/10.1007/s11600-021-00567-9
  53. Yanis, M., Faisal, A., Yenny, A., Muzakir, Z., Abubakar, M., & Nazli, I. (2020). Continuity of Great Sumatran Fault in the Marine Area revealed by 3D Inversion of Gravity Data. Jurnal Teknologi, 83(1), 145–155. https://doi.org/10.11113/jurnalteknologi.v83.14824
  54. Yanis, M., Ismail, N., & Abdullah, F. (2022). Shallow Structure Fault and Fracture Mapping in Jaboi Volcano, Indonesia, Using VLF–EM and Electrical Resistivity Methods. Natural Resources Research, 31(1), 335–352. https://doi.org/10.1007/s11053-021-09966-7
  55. Yanis, M., Marwan, Idroes, R., Zaini, N., Paembonan, A. Y., Ananda, R., & Ghani, A. A. (2022). A pilot survey for mapping the fault structure around the Geuredong volcano by using high-resolution global gravity. Acta Geophysica 2022, 1–19. https://doi.org/10.1007/S11600-022-00860-1
  56. Yanis, M., Marwan, M., Paembonan, A. Y., Yudhyantoro, Y., Rusydy, I., Idris, S., & Asrillah, A. (2021). Geophysical and Geotechnical Approaches in Developing Subsurface Model for Gas Power Plant Foundation. Indian Geotechnical Journal. https://doi.org/10.1007/s40098-021-00559-y
  57. Yanis, M., Novari, I., Zaini, N., Marwan, Pembonan, A. Y., & Nizamuddin. (2020). OLI and TIRS Sensor Platforms for Detection the Geothermal Prospecting in Peut Sagoe Volcano, Aceh Province, Indonesia. Proceedings of the International Conference on Electrical Engineering and Informatics, 2020-Octob, 1–6. https://doi.org/10.1109/ICELTICs50595.2020.9315378
  58. Yanis, M., Zainal, M., Marwan, M., & Ismail, N. (2019, June 3). Delineation of Buried Paleochannel Using EM Induction in Eastern Banda Aceh, Indonesia. 81st EAGE Conference and Exhibition 2019. https://doi.org/10.3997/2214-4609.201900705
  59. Yanis, M., Zaini, N., Novari, I., Abdullah, F., Dewanto, B. G., Isa, M., Marwan, M., Zainal, M., & Abdurrahman, A. (2023). Monitoring of Heat Flux Energy in the Northernmost Part of Sumatra Volcano Using Landsat 8 and Meteorological Data. International Journal of Renewable Energy Development, 12(1), 55–65. https://doi.org/10.14710/ijred.2023.47048
  60. Zaini, N., Yanis, M., Abdullah, F., Van Der Meer, F., & Aufaristama, M. (2022). Exploring the geothermal potential of Peut Sagoe volcano using Landsat 8 OLI/TIRS images. Geothermics, 105, 102499. https://doi.org/10.1016/j.geothermics.2022.102499
  61. Zaini, N., Yanis, M., Marwan, Isa, M., & van der Meer, F. (2021). Assessing of land surface temperature at the Seulawah Agam volcano area using the landsat series imagery. Journal of Physics: Conference Series, 1825(1). https://doi.org/10.1088/1742-6596/1825/1/012021
  62. Zhdanov, M. S. (2009). Geophysical electromagnetic theory and methods (First Edit). Elsevier B.V. https://doi.org/10.1016/s0076-6895(09)70001-0

Last update:

No citation recorded.

Last update: 2025-05-24 00:25:28

No citation recorded.