skip to main content

An electro-thermal modeling of distribution transformer for hottest spot evaluation under photovoltaic-induced harmonics

1Centre of Electrical Energy Systems, Institute of Future Energy, Universiti Teknologi Malaysia, Skudai, Malaysia

2Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia

3Electrical Engineering Branch, Public Works Departments of Malaysia, Kuala Lumpur, Malaysia

4 School of Engineering and Computing, Mila University, Nilai, Malaysia

View all affiliations
Received: 24 Dec 2024; Revised: 27 Feb 2025; Accepted: 18 Mar 2025; Available online: 25 Mar 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Elevated winding insulation temperature, driven by harmonic distortions, is a key factor in transformer lifespan reduction. Conventional models often oversimplify the effect of combined current and voltage harmonics. This paper proposes an electro-thermal modeling approach, incorporating dual heat sources from core and winding domains, to enhance HST estimation in distribution transformers affected by photovoltaic-induced (PV)-induced harmonic losses. A sophisticated numerical approach, Finite Element Analysis (FEA), is employed using COMSOL Multiphysics software, with a 250-minute time-dependent study assessing thermal effects. The results, verified against a mathematical model approach based on IEEE C57.110-2018 guidance, demonstrate that higher levels of harmonics lead to a rapid increase in HST, accelerating the time to reach the aging factor temperature and consequently diminishing the transformer’s operational lifespan. Specifically, the per-unit life of the transformer decreases from 0.219 in Case 1 to 0.154 in Case 2 and 0.027 in Case 3, while the aging acceleration factor increases from 4.310 to 5.683 and 21.7, respectively. The methods showed over 95% alignment with the mathematical modeling approach, confirming the model’s precision in its predictive capability. The novelty of this study lies in its enhanced electro-thermal framework, which overcomes the limitations of conventional methods by integrating dual heat sources and providing a refined assessment of transformer aging under harmonic distortions. This advancement offers a more precise and computationally efficient approach for assessing transformer thermal stress under harmonic distortions.
Fulltext View|Download
Keywords: Distribution transformer; harmonics; hotspot temperature; photovoltaic systems; winding insulation

Article Metrics:

  1. Abdali, A., Mazlumi, K., & Rabiee, A. (2024). Harmonics impact on hotspot temperature increment of distribution transformers: Nonuniform magnetic-thermal approach. International Journal of Electrical Power and Energy Systems, 157. https://doi.org/10.1016/j.ijepes.2024.109826
  2. Ackermann, T., Ran Andersson, G., & Sö Der A, L. (2001). Distributed generation: a definition. Electric Power Systems Research, 57. www.elsevier.com/locate/epsr
  3. AJ, C., Salam, M. A., Rahman, Q. M., Wen, F., Ang, S. P., & Voon, W. (2018). Causes of transformer failures and diagnostic methods – A review. In Renewable and Sustainable Energy Reviews, 82, 1442–1456. https://doi.org/10.1016/j.rser.2017.05.165
  4. Américo, J. P., Leite, J. V., & Mazzola, C. F. (2024). Enhanced thermal modeling of three-phase dry-type transformers. Case Studies in Thermal Engineering, 58. https://doi.org/10.1016/j.csite.2024.104445
  5. Awadallah, M. A., Venkatesh, B., & Singh, B. N. (2015). Impact of solar panels on power quality of distribution networks and transformers. Canadian Journal of Electrical and Computer Engineering, 38(1), 45–51. https://doi.org/10.1109/CJECE.2014.2359111
  6. Awadallah, M. A., Xu, T., Venkatesh, B., & Singh, B. N. (2016). On the Effects of Solar Panels on Distribution Transformers. IEEE Transactions on Power Delivery, 31(3), 1176–1185. https://doi.org/10.1109/TPWRD.2015.2443715
  7. Cazacu, E., Ionita, V., & Petrescu, L. (2018). Thermal Aging of Power Distribution Transformers Operating under Nonlinear and Balanced Load Conditions. https://doi.org/10.15598/aeee.v16i1.2701
  8. Chen, T., Liu, Z., Wang, P., Jiang, J., & Yang, F. (2023). Temperature Simulation of 800 kVA Converter Transformer Windings Considering the Effects of High-Order Harmonics. 2023 26th International Conference on Electrical Machines and Systems, ICEMS 2023, 2589–2593. https://doi.org/10.1109/ICEMS59686.2023.10344825
  9. Comsol. (2022). The Heat Transfer Module User’s Guide. https://doc.comsol.com/6.1/doc/com.comsol.help.heat/HeatTransferModuleUsersGuide.pdf
  10. Dao, T., & Phung, B. T. (2018). Effects of voltage harmonic on losses and temperature rise in distribution transformers. IET Generation, Transmission and Distribution, 12(2), 347–354. https://doi.org/10.1049/iet-gtd.2017.0498
  11. Das, A. K., & Chatterjee, S. (2017). Finite element method-based modelling of flow rate and temperature distribution in an oil-filled disc-type winding transformer using COMSOL multiphysics. IET Electric Power Applications, 11(4), 664–673. https://doi.org/10.1049/iet-epa.2016.0446
  12. El Batawy, S. A., & Morsi, W. G. (2017). On the impact of high penetration of rooftop solar photovoltaics on the aging of distribution transformers. Canadian Journal of Electrical and Computer Engineering, 40(2), 93–100. https://doi.org/10.1109/CJECE.2017.2694698
  13. Fortes, R. R. A., Buzo, R. F., & de Oliveira, L. C. O. (2020). Harmonic distortion assessment in power distribution networks considering DC component injection from PV inverters. Electric Power Systems Research, 188. https://doi.org/10.1016/j.epsr.2020.106521
  14. Gorginpour, H., Ghimatgar, H., & Toulabi, M. S. (2022). Lifetime Estimation and Optimal Maintenance Scheduling of Urban Oil-Immersed Distribution-Transformers Considering Weather-Dependent Intelligent Load Model and Unbalanced Loading. IEEE Transactions on Power Delivery, 37(5), 4154–4165. https://doi.org/10.1109/TPWRD.2022.3146154
  15. Hajipour, E., Mohiti, M., Farzin, N., & Vakilian, M. (2017). Optimal distribution transformer sizing in a harmonic involved load environment via dynamic programming technique. Energy, 120, 92–105. https://doi.org/10.1016/j.energy.2016.12.113
  16. Hamza, E. A., Sedhom, B. E., & Badran, E. A. (2021). Impact and assessment of the overvoltage mitigation methods in low-voltage distribution networks with excessive penetration of PV systems: A review. International Transactions on Electrical Energy Systems 31(2). https://doi.org/10.1002/2050-7038.13161
  17. Hossain, M. S., Abboodi Madlool, N., Al-Fatlawi, A. W., & El Haj Assad, M. (2023). High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement. Sustainability (Switzerland) 15(2). https://doi.org/10.3390/su15021174
  18. IEEE Std C57.91-2011(Revision of IEEE Std C57.91-1995) : IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators Sponsored by the Transformers Committee. (2011). IEEE
  19. IEEE Std C57.110-2018 (Revision of IEEE Std C57.110-2008) : IEEE Recommended Practice for Establishing Liquid-Immersed and Dry-Type Power and Distribution Transformer Capability When Supplying Nonsinusoidal Load Currents. (2018). IEEE
  20. IEEE Std C57.12.00-2021 - IEEE Standard for General Requirements for Liquid-Immersed Distribution, Power, and Regulating Transformers. (2022). IEEE
  21. León-Martínez, V., Peñalvo-López, E., Montañana-Romeu, J., Andrada-Monrós, C., & Molina-Cañamero, L. (2023). Assessment of Load Losses Caused by Harmonic Currents in Distribution Transformers Using the Transformer Loss Calculator Software. Environments - MDPI, 10(10). https://doi.org/10.3390/environments10100177
  22. Liu, C., Hao, J., Liao, R., Yang, F., Li, W., & Li, Z. (2024). High proportion and large value harmonic current influence on the magnetic field, loss and temperature distribution for ultrahigh voltage converter transformer. IET Electric Power Applications, 18(2), 208–225. https://doi.org/10.1049/elp2.12382
  23. Loaena, Y. G. (2017). Evaluation of Harmonics & Its Effect on Transformer Load Loss. Journal of Energy Technologies and Policy, 7(8). www.iiste.org
  24. Lu, P., Buric, M. P., Byerly, K., Moon, S. R., Nazmunnahar, M., Simizu, S., Leary, A. M., Beddingfield, R. B., Sun, C., Zandhuis, P., McHenry, M. E., & Ohodnicki, P. R. (2019). Real-Time Monitoring of Temperature Rises of Energized Transformer Cores with Distributed Optical Fiber Sensors. IEEE Transactions on Power Delivery, 34(4), 1588–1598. https://doi.org/10.1109/TPWRD.2019.2912866
  25. Majeed, I., & Nwulu, N. (2022). Impact of Reverse Power Flow on Distributed Transformers in a Solar Photovoltaic Integrated Low Voltage Network. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4172636
  26. Panigrahi, R., Mishra, S. K., Srivastava, S. C., Srivastava, A. K., & Schulz, N. N. (2020). Grid Integration of Small-Scale Photovoltaic Systems in Secondary Distribution Network - A Review. IEEE Transactions on Industry Applications, 56(3), 3178–3195. https://doi.org/10.1109/TIA.2020.2979789
  27. Ruiz, I. R. M., Guajardo, L. A. T., Alfaro, L. H. R., Salinas, F. S., Maldonado, J. R., & Vázquez, M. A. G. (2021). Design implication of a distribution transformer in solar power plants based on its harmonic profile. Energies, 14(5). https://doi.org/10.3390/en14051362
  28. Said, D. B. M., Yassin, Z. I. M., Ahmad, N., Abd Malik, N. N. B. N., & Abdullah, H. (2020). Impact of unbalanced harmonic loads towards winding temperature rise using fem modeling. Indonesian Journal of Electrical Engineering and Informatics, 8(2), 409–418. https://doi.org/10.11591/ijeei.v8i2.1283
  29. Sanjay Kulshreshtha, & Dr D.K Chaturvedi. (2024). Effect of Generated Harmonics On Transformer Losses Due to Solar Penetration. International Research Journal on Advanced Engineering and Management (IRJAEM), 2(6), 1939–1945. https://doi.org/10.47392/irjaem.2024.0287
  30. Shaoxin, M., Cihan, D., Zhiye, D., & Xue, C. (2019). Research on Transformer Flow-thermal Coupling Calculation Considering Harmonic Influence. 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), 397–401. https://doi.org/10.1109/ICPICS47731.2019.8942423
  31. Si, W. R., Fu, C. Z., Wu, X. T., Zhou, X., Li, X. G., Yu, Y. T., Jia, X. Y., & Yang, J. (2020). Numerical Study of Electromagnetic Loss and Heat Transfer in an Oil-Immersed Transformer. Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/6514650
  32. Skillen, A., Revell, A., Iacovides, H., & Wu, W. (2012). Numerical prediction of local hot-spot phenomena in transformer windings. Applied Thermal Engineering, 36(1), 96–105. https://doi.org/10.1016/j.applthermaleng.2011.11.054
  33. Soleimani, M., & Kezunovic, M. (2021). Economic Analysis of Transformer Loss of Life Mitigation Using Energy Storage and PV Generation. 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). https://doi.org/10.1109/TD39804.2020.9299895
  34. Soleimani, M., & Kezunovic, M. (2020). Mitigating Transformer Loss of Life and Reducing the Hazard of Failure by the Smart EV Charging. IEEE Transactions on Industry Applications, 56(5), 5974–5983. https://doi.org/10.1109/TIA.2020.2986990
  35. Taheri, A. A., Abdali, A., & Rabiee, A. (2019). A Novel Model for Thermal Behavior Prediction of Oil-Immersed Distribution Transformers with Consideration of Solar Radiation. IEEE Transactions on Power Delivery, 34(4), 1634–1646. https://doi.org/10.1109/TPWRD.2019.2916664
  36. Thango, B. A., & Bokoro, P. N. (2022). A Novel Approach to Predict Transformer Temperature Rise under Harmonic Load Current Conditions. Energies, 15(8). https://doi.org/10.3390/en15082769
  37. Thango, B. A., Sikhosana, L. S., Nnachi, A. F., & Jordaan, J. A. (2021). Loss financial evaluation and total ownership cost of transformers in large-scale solar plants. 2021 IEEE PES/IAS Power Africa. https://doi.org/10.1109/PowerAfrica52236.2021.9543139
  38. Uçar, B., Bağrıyanık, M., & Kömürgöz, G. (2017). Influence of PV Penetration on Distribution Transformer Aging. Journal of Clean Energy Technologies, 5(2), 131–134. https://doi.org/10.18178/jocet.2017.5.2.357
  39. Wan, D., Zhang, L., Zhao, M., & Zhou, H. (2019). Calculation Method of Hot Spot Temperature of Distribution Power Transmission Equipment Insulation Winding Based on Eddy Current Loss Density Distribution. 3rd IEEE Conference on Energy Internet and Energy System Integration, 2750–2753. https://doi.org/10.1109/EI247390.2019.9062046
  40. Xiao, D., Xiao, R., Yang, F., Chi, C., Hua, M., & Yang, C. (2022). Simulation research on onan transformer winding temperature field based on temperature rise test. Thermal Science, 26(4), 3229–3240. https://doi.org/10.2298/TSCI211127047X
  41. Yang, Z., Ruan, J., Huang, D., Du, Z., Tang, L., & Zhou, T. (2019). Calculation of Hot Spot Temperature of Transformer Bushing Considering Current Fluctuation. IEEE Access, 7, 120441–120448. https://doi.org/10.1109/ACCESS.2019.2937510
  42. Yuan, W., Yuan, X., Xu, L., Zhang, C., & Ma, X. (2023). Harmonic Loss Analysis of Low-Voltage Distribution Network Integrated with Distributed Photovoltaic. Sustainability (Switzerland), 15(5). https://doi.org/10.3390/su15054334

Last update:

No citation recorded.

Last update: 2025-05-23 20:36:58

No citation recorded.