skip to main content

One pot microwave-assisted synthesis of 2,5-dimethylfuran from bamboo hydrolysate in presence of green solvent and low-cost metal catalyst

1Chemical Engineering Department, Higher Institution Centre of Excellence - Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy & Resources, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia

2Centre for Carbon Capture, Utilisation, and Storage, Institute of Sustainable Energy & Resources, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia

3Generation Unit, Fuel and Combustion Section, TNB Research Sdn. Bhd., Kajang, Malaysia

Received: 15 Jan 2025; Revised: 19 Mar 2025; Accepted: 7 Apr 2025; Available online: 16 Apr 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study looked at the one-pot synthesis of 2,5-dimethylfuran (DMF) from glucose-rich bamboo hydrolysate using microwave heating technology in presence of green solvent, Low Transition Temperature Mixture (LTTM), and activated carbon-supported copper catalyst (Cu/AC). While DMF is mainly synthesized by using commercial glucose, the biomass with high cellulose content can also be used. Besides, the conventional synthesis that commonly employs organic solvents and noble metal catalysts has great toxicological and financial barriers. Thus, alternative cheaper and greener solvents and catalysts are needed, such as LTTM and carbon-supported copper. The bamboo hydrolysate was produced via acid hydrolysis with 0.5M sulphuric acid (H2SO4). LTTM was synthesized using choline chloride (ChCl) and malic acid, which were proven to be effective in DMF production in presence of H2SO4. Reaction time, catalyst loading, and LTTM ratio were studied via response surface methodology with DMF yield as the response. Temperature was set at 120 °C in accordance with previous study. The LTTM was found to experience minimal mass loss at this reaction temperature. The Cu/AC catalyst was found to carry mostly reduced copper oxide (CuO) particles, with slight CuO residues, indicating successful synthesis of the catalyst. A quadratic regression model has been developed with R2=0.9481, with expected optimal condition at 1 min reaction time, 1% catalyst loading, and 4:1 LTTM ratio, with expected DMF yield of 25.61 mol% (13.67 mass percent). Experimental validation yielded 21.28 ± 0.77 mol% (11.36 mass percent), indicating that this regression model was accurate. Overall, this study shown that the LTTM and Cu/AC are capable of producing DMF from biomass in one-pot manner.
Fulltext View|Download
Keywords: 2,5-dimethylfuran; biomass; copper catalyst; DMF; low transition temperature mixture; LTTM
Funding: Yayasan Universiti Teknologi PETRONAS

Article Metrics:

  1. Abdul Manaf, A. S., Mostapha, M., Ameen, M., Yusup, S., & Amran, N. A. (2023). Optimization Study of Glucose Synthesis to 5-Hydroxymethylfurfural (5-HMF) by Using Low Transition-Temperature Mixtures (LTTM). Catalysts, 13(5). https://doi.org/10.3390/catal13050829
  2. Agarwal, B., Kailasam, K., Sangwan, R. S., & Elumalai, S. (2018). Traversing the history of solid catalysts for heterogeneous synthesis of 5-hydroxymethylfurfural from carbohydrate sugars: A review. Renewable and Sustainable Energy Reviews, 82, 2408-2425. https://doi.org/10.1016/j.rser.2017.08.088
  3. Agrell, J. (2003). Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3. Journal of Catalysis, 219(2), 389-403. https://doi.org/10.1016/s0021-9517(03)00221-5
  4. Al-Risheq, D. I. M., Nasser, M. S., Qiblawey, H., Ba-Abbad, M. M., Benamor, A., & Hussein, I. A. (2021). Destabilization of stable bentonite colloidal suspension using choline chloride based deep eutectic solvent: Optimization study. Journal of Water Process Engineering, 40. https://doi.org/10.1016/j.jwpe.2020.101885
  5. Anuar, A., Yakub, I., Mohamed Sutan, N., Hipolito, C. N., & Taufiq-Yap, Y. H. (2014). Temperature-Programmed Reduction of Copper-Manganese Catalysts Derived from Biomass Activated Carbon. Journal of Applied Science & Process Engineering, 1(1), 28-38. https://doi.org/10.33736/jaspe.157.2014
  6. Ayele, L., Dadi, G., Mamo, W., Chebude, Y., & Diaz, I. (2014). Conversion of glucose into platform chemicals using aluminophosphates (SAPO-5 and MeAPO-5) in [BMIM]Cl ionic liquid. Bulletin of the Chemical Society of Ethiopia, 28(1). https://doi.org/10.4314/bcse.v28i1.6
  7. Bandgar, P. S., Jain, S., & Panwar, N. L. (2022). A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass and bioenergy, 161. https://doi.org/10.1016/j.biombioe.2022.106479
  8. Binder, J. B., & Raines, R. T. (2009). Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 131(5), 1979-1985. https://doi.org/10.1021/ja808537j
  9. Cereda, M. P. (2024). Chapter 5 - Starch hydrolysis: physical, acid, and enzymatic processes. In M. P. Cereda & O. F. Vilpoux (Eds.), Starch Industries: Processes and Innovative Products in Food and Non-Food Uses (pp. 75-113). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-323-90842-9.00016-9
  10. Chakraborty, D., & Mondal, N. K. (2018). Hypertensive and toxicological health risk among women exposed to biomass smoke: A rural Indian scenario. Ecotoxicology and Environmental Safety, 161, 706-714. https://doi.org/10.1016/j.ecoenv.2018.06.024
  11. Chary, K. V. R., Seela, K. K., Sagar, G. V., & Sreedhar, B. (2004). Characterization and Reactivity of Niobia Supported Copper Oxide Catalysts. The Journal of Physical Chemistry B, 108(2), 658-663. https://doi.org/10.1021/jp035738s
  12. Cheah, K. W., Taylor, M. J., Osatiashtiani, A., Beaumont, S. K., Nowakowski, D. J., Yusup, S., Bridgwater, A. V., & Kyriakou, G. (2020). Monometallic and bimetallic catalysts based on Pd, Cu and Ni for hydrogen transfer deoxygenation of a prototypical fatty acid to diesel range hydrocarbons. Catalysis Today, 355, 882-892. https://doi.org/10.1016/j.cattod.2019.03.017
  13. Chen, W. C., Lin, Y. C., Chu, I. M., Wang, L. F., Tsai, S. L., & Wei, Y. H. (2020). Feasibility of enhancing production of 5-hydroxymethylfurfural using deep eutectic solvents as reaction media in a high-pressure reactor. Biochemical Engineering Journal, 154. https://doi.org/10.1016/j.bej.2019.107440
  14. De, S., Dutta, S., & Saha, B. (2012). One-pot conversions of lignocellulosic and algal biomass into liquid fuels. ChemSusChem, 5(9), 1826-1833. https://doi.org/10.1002/cssc.201200031
  15. Deivayanai, V. C., Yaashikaa, P. R., Senthil Kumar, P., & Rangasamy, G. (2022). A comprehensive review on the biological conversion of lignocellulosic biomass into hydrogen: Pretreatment strategy, technology advances and perspectives. Bioresource technology 365. https://doi.org/10.1016/j.biortech.2022.128166
  16. Endot, N. A., Junid, R., & Jamil, M. S. S. (2021). Insight into biomass upgrade: A review on hydrogenation of 5-hydroxymethylfurfural (hmf) to 2,5-dimethylfuran (dmf). Molecules, 26. https://doi.org/10.3390/molecules26226848
  17. Esteves, L. M., Brijaldo, M. H., Oliveira, E. G., Martinez, J. J., Rojas, H., Caytuero, A., & Passos, F. B. (2020). Effect of support on selective 5-hydroxymethylfurfural hydrogenation towards 2,5-dimethylfuran over copper catalysts. Fuel, 270. https://doi.org/10.1016/j.fuel.2020.117524
  18. Flores, J. H., Peixoto, D. P. B., Appel, L. G., de Avillez, R. R., & Silva, M. I. P. d. (2011). The influence of different methanol synthesis catalysts on direct synthesis of DME from syngas. Catalysis Today, 172(1), 218-225. https://doi.org/10.1016/j.cattod.2011.02.063
  19. Giannousi, K., Avramidis, I., & Dendrinou-Samara, C. (2013). Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances, 3(44), 21743-21752. https://doi.org/10.1039/C3RA42118J
  20. Gomes, G. R., & Pastre, J. C. (2020). Microwave-assisted HMF production from water-soluble sugars using betaine-based natural deep eutectic solvents (NADES) [10.1039/C9SE01278H]. Sustainable Energy & Fuels, 4(4), 1891-1898. https://doi.org/10.1039/C9SE01278H
  21. He, J., Peng, J., Ling, R., & Wang, J. (2024). Recent Progress on the Production of Liquid Fuel 2,5-Dimethylfuran via Chemoselective Hydrogenolysis Biomass-Derived 5-Hydroxymethylfurfural. Catalysts, 15(1). https://doi.org/10.3390/catal15010031
  22. Hoang, A. T., Nižetić, S., & Ölçer, A. I. (2021). 2,5-Dimethylfuran (DMF) as a promising biofuel for the spark ignition engine application: A comparative analysis and review. Fuel, 285. https://doi.org/10.1016/j.fuel.2020.119140
  23. Hosseini, M., Chin, A. W. H., Behzadinasab, S., Poon, L. L. M., & Ducker, W. A. (2021). Cupric Oxide Coating That Rapidly Reduces Infection by SARS-CoV-2 via Solids. ACS Appl Mater Interfaces, 13(5), 5919-5928. https://doi.org/10.1021/acsami.0c19465
  24. Hu, L., Tang, X., Xu, J., Wu, Z., Lin, L., & Liu, S. (2014). Selective transformation of 5-hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported ruthenium. Industrial and Engineering Chemistry Research, 53(8), 3056-3064. https://doi.org/10.1021/ie404441a
  25. IEA. (2024). World Energy Outlook 2024. I. E. Agency. https://www.iea.org/reports/world-energy-outlook-2024
  26. Insyani, R., Verma, D., Kim, S. M., & Kim, J. (2017). Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal–organic framework@sulfonated graphene oxide catalyst. Green Chemistry, 19(11), 2482-2490. https://doi.org/10.1039/c7gc00269f
  27. Jha, S., Nanda, S., Acharya, B., & Dalai, A. K. (2022). A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies, 15(17). https://doi.org/10.3390/en15176352
  28. Kon Ryu, S., Kyu Lee, W., & Jin Park, S. (2004). Thermal Decomposition of Hydrated Copper Nitrate [Cu(NO 3 ) 2 ·3H 2 O] on Activated Carbon Fibers. Carbon letters, 5 (4), 180-185. https://scispace.com/papers/thermal-decomposition-of-hydrated-copper-nitrate-cu-no-3h-o-89bzrmyvgr
  29. Lim, H. Y., Rashidi, N. A., Cheah, K. W., & Abdul Manaf, A. S. (2023). One Step Microwave Synthesis of 5-Hydroxymethylfurfural from Bamboo in Presence of Low Transition Temperature Mixture. Chemical Engineering Transactions, 106, 127-132. https://doi.org/10.3303/CET23106022
  30. Lim, H. Y., Rashidi, N. A., Othman, M. F. H., Ismail, I. S., Saadon, S. Z. A. H., Chin, B. L. F., Yusup, S., & Rahman, M. N. (2023). Recent advancement in thermochemical conversion of biomass to biofuel. Biofuels, 15(5), 587-604. https://doi.org/10.1080/17597269.2023.2261788
  31. Ling, P., Hao, Q., Lei, J., & Ju, H. (2015). Porphyrin functionalized porous carbon derived from metal–organic framework as a biomimetic catalyst for electrochemical biosensing. Journal of Materials Chemistry B, 3(7), 1335-1341. https://doi.org/10.1039/C4TB01620C
  32. Liu, B., & Zhang, Z. (2016). One-Pot Conversion of Carbohydrates into Furan Derivatives via Furfural and 5-Hydroxylmethylfurfural as Intermediates. ChemSusChem, 9(16), 2015-2036. https://doi.org/10.1002/cssc.201600507
  33. Maiyalagan, T., & Scott, K. (2010). Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. Journal of Power Sources, 195(16), 5246-5251
  34. Morales, M., Pielhop, T., Saliba, P., Hungerbühler, K., Rudolf von Rohr, P., & Papadokonstantakis, S. (2017). Sustainability assessment of glucose production technologies from highly recalcitrant softwood including scavengers. Biofuels, Bioproducts and Biorefining, 11(3), 441-453. https://doi.org/10.1002/bbb.1756
  35. Román-Leshkov, Y., Barrett, C. J., Liu, Z. Y., & Dumesic, J. A. (2007). Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature, 447(7147), 982-985. https://doi.org/10.1038/nature05923
  36. Saravanan, A., Senthil Kumar, P., Jeevanantham, S., Karishma, S., & Vo, D. V. N. (2022). Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresource technology, 344. https://doi.org/10.1016/j.biortech.2021.126203
  37. Seguel, J., Garcia, R., Chimentao, R. J., Garcia-Fierro, J. L., Ghampson, I. T., Escalona, N., & Sepulveda, C. (2020). Thermal Modification Effect on Supported Cu-Based Activated Carbon Catalyst in Hydrogenolysis of Glycerol. Materials (Basel), 13(3). https://doi.org/10.3390/ma13030603
  38. Seo, M. W., Lee, S. H., Nam, H., Lee, D., Tokmurzin, D., Wang, S., & Park, Y.-K. (2022). Recent advances of thermochemical conversieon processes for biorefinery. Bioresource technology, 343(August 2021), 126109-126109. https://doi.org/10.1016/j.biortech.2021.126109
  39. Shelepova, E. V., Vedyagin, A. A., Ilina, L. Y., Nizovskii, A. I., & Tsyrulnikov, P. G. (2017). Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation. Applied Surface Science, 409, 291-295. https://doi.org/10.1016/j.apsusc.2017.02.220
  40. Son Le, H., Said, Z., Tuan Pham, M., Hieu Le, T., Veza, I., Nhanh Nguyen, V., Deepanraj, B., & Huong Nguyen, L. (2022). Production of HMF and DMF biofuel from carbohydrates through catalytic pathways as a sustainable strategy for the future energy sector. Fuel, 324. https://doi.org/10.1016/j.fuel.2022.124474
  41. Viar, N., Requies, J. M., Agirre, I., Iriondo, A., García-Sancho, C., & Arias, P. L. (2022). HMF hydrogenolysis over carbon-supported Ni–Cu catalysts to produce hydrogenated biofuels. Energy, 255. https://doi.org/10.1016/j.energy.2022.124437
  42. Wahab, R., Mustafa, M. T., Mohamed, A., Samsi, H. W., & Rasat, M. S. M. (2013). Extractives, Holocellulose, α-Cellulose, Lignin, and Ash Contents in 3 Year-Old Bamboo Culms Gigantochloa Brang, G. Levis, G. Scortechinii and G. Wrayi. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 4(3), 1235-1247. https://www.rjpbcs.com/pdf/2013_4(3)/[132].pdf
  43. Wang, H., Zhu, C., Li, D., Liu, Q., Tan, J., Wang, C., Cai, C., & Ma, L. (2019). Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran. Renewable and Sustainable Energy Reviews,103, 227-247. https://doi.org/10.1016/j.rser.2018.12.010
  44. Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33-86. https://doi.org/10.1016/j.pecs.2017.05.004
  45. Wei, Z., Lou, J., Li, Z., & Liu, Y. (2016). One-pot production of 2,5-dimethylfuran from fructose over Ru/C and a Lewis–Brønsted acid mixture in N,N-dimethylformamide. Catalysis Science & Technology, 6(16), 6217-6225. https://doi.org/10.1039/c6cy00275g
  46. Yadav, V. G., Yadav, G. D., & Patankar, S. C. (2020). The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-à-vis sustainability and the environment. Clean Technologies and Environmental Policy, 22, 1757-1774. https://doi.org/10.1007/s10098-020-01945-5

Last update:

No citation recorded.

Last update: 2025-05-22 22:56:25

No citation recorded.