skip to main content

Simultaneous effect of precursor sources and concentration on structural, morphological and optical properties of ZnO nanostructured thin films for photovoltaic applications

1Regional Center of Excellence for Electricity Management (CERME), University of Lomé, 01BP 1515, Lomé, Togo

2Laboratory on Solar Energy, Department of Physics, Faculty of Sciences, University of Lomé, 01BP 1515, Lomé, Togo

3School of Arts and Natural Sciences, Joy University, Raja Nagar, Vadakangulam, Near Kanyakumari, Tirunelveli Dist.-627116, Tamil Nadu, India

4 Physics of Semiconductor Materials and Components Laboratory, Department of Physics, Faculty of Sciences, University of Lomé, 01BP 1515, Lomé, Togo

5 Physics Department, Auburn University, Auburn, AL 36849, United States

6 National Coalition of Independent Scholars, United States

View all affiliations
Received: 6 Jan 2025; Revised: 19 Feb 2025; Accepted: 29 Mar 2025; Available online: 3 Apr 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The collection and transport of charges at the electrodes are the main factors limiting the efficiency of organic solar cells. Zinc oxide (ZnO) in nanostructured form helps to overcome this problem by introducing a ZnO buffer layer between the photoanode and the donor material. To achieve this, the ZnO thin film must exhibit good crystallinity, along with good electrical conductivity and high optical transparency in the visible range. The aim of this work is to investigate the effect of precursor sources and precursor concentrations on the structural, morphological, and optical properties of ZnO thin films. Three different precursor sources have been used: zinc acetate, zinc chloride and zinc nitrate. In each deposition solution, the precursor concentration varied from 0.1 M to 0.3 M.  The ZnO films were deposited on glass substrates and all the films were annealed at 400°C for 3 hours. The structural, morphological and optical properties of deposited films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy respectively. XRD results showed that, regardless of the precursor source, all the ZnO films are polycrystalline with a hexagonal wurtzite structure. ZnO films obtained from acetate and nitrate sources crystallize preferentially along (002) and the peak intensity increases as the precursor concentration increases. SEM images showed that all the ZnO films are homogeneous, but films deposited from zinc acetate and zinc nitrate looked more compact and smoother than those obtained with zinc chloride which looked porous. UV-visible spectroscopy results revealed that the films transmittance depends both on precursor source and concentration. ZnO thin films deposited from zinc acetate at 0.3M concentration exhibit the best transmittance of 95% due to their smooth and uniform surfaces. The band gap of ZnO obtained from the zinc acetate precursor decreases with increasing solution concentration. It is found to be 3.29 eV, 3.26 eV, and 3.22 eV for concentrations of 0.1 M, 0.2 M, and 0.3 M, respectively. It therefore appears that ZnO films obtained from zinc acetate can be used as an electron transport layer for solar cells as they exhibit the best crystallinity and the highest transmittance.
Fulltext View|Download
Keywords: zinc oxide; nanostructure; precursor concentration; precursor source; spray pyrolysis

Article Metrics:

  1. Abbas, F. I., & Sugiyama, M. (2024). Solution-dependent electrostatic spray deposition (ESD) ZnO thin film growth processes. Materials Science. https://doi.org/10.48550/arXiv.2406.13313
  2. Abdelghani, G. M., Ahmed, A. B., & Al-Zubaidi, A. B. (2022). Synthesis, characterization, and the influence of energy of irradiation on optical properties of ZnO nanostructures. Scientific Reports, 12(1), 20016. https://doi.org/10.1038/s41598-022-24648-x
  3. Abdulrazzaq, O. A., Saini, V., Bourdo, S., Dervishi, E., & Biris, A. S. (2013). Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement. Particulate Science and Technology, 31(5), 427–442. https://doi.org/10.1080/02726351.2013.769470
  4. Akir, S., Hamdi, A., Addad, A., Coffinier, Y., Boukherroub, R., & Dakhlaoui Omrani, A. (2017). Facile synthesis of carbon-ZnO nanocomposite with enhanced visible light photocatalytic performance. Applied Surface Science, 400, 461–470. https://doi.org/10.1016/j.apsusc.2016.12.212
  5. AL-Arique, H. Q. N. M., AL-Qadasy, S. S. S., Kaawash, N. M. S., Chishty, S. Q., & Bogle, K. A. (2024). Study the characterization of ZnO and AZO films prepared by spray pyrolysis and the effect of annealing temperature. Optical Materials, 150, 115261. https://doi.org/10.1016/j.optmat.2024.115261
  6. Al-Rasheedi, A., Ansari, A. R., Abdeldaim, A. M., & Aida, M. S. (2022a). Growth of zinc oxide thin films using different precursor solutions by spray pyrolysis technique. The European Physical Journal Plus, 137(12), 1371. https://doi.org/10.1140/epjp/s13360-022-03599-2
  7. Al-Rasheedi, A., Ansari, A. R., Abdeldaim, A. M., & Aida, M. S. (2022b). Growth of zinc oxide thin films using different precursor solutions by spray pyrolysis technique. The European Physical Journal Plus, 137(12), 1371. https://doi.org/10.1140/epjp/s13360-022-03599-2
  8. Amananti, W., Ardiyanto, R., Sutanto, H., Nurhasanah, I., & Tivani, I. (2022). Analysis of the optical properties of ZnO thin films deposited on a glass substrate by the So-gel method. Journal of Natural Sciences and Mathematics Research, 8(1), 52–58. https://doi.org/10.21580/jnsmr.2022.8.1.9623
  9. Amroun, M. N., Salim, K., Kacha, A. H., & Khadraoui, M. (2020). Effect of TM (TM= Sn, Mn, Al) Doping on the Physical Properties of ZnO Thin Films Grown by Spray Pyrolysis Technique: A comparative Study. International Journal of Thin Films Science and Technology, 9(1), 7–19. https://doi.org/10.18576/ijtfst/090102
  10. Arca, E., Fleischer, K., & Shvets, I. V. (2009). Influence of the Precursors and Chemical Composition of the Solution on the Properties of ZnO Thin Films Grown by Spray Pyrolysis. The Journal of Physical Chemistry C, 113(50), 21074–21081. https://doi.org/10.1021/jp907990z
  11. Arifin, N. M., Mhd Noor, E. E., Mohamad, F., & Mohamad, N. (2024). The Impact of Spinning Speed on n-TiO2/ZnO Bilayer Thin Film Fabricated through Sol–Gel Spin-Coating Method. Coatings, 14(1), 73. https://doi.org/10.3390/coatings14010073
  12. Bacaksiz, E., Parlak, M., Tomakin, M., Özçelik, A., Karakız, M., & Altunbaş, M. (2008). The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. Journal of Alloys and Compounds, 466(1–2), 447–450. https://doi.org/10.1016/j.jallcom.2007.11.061
  13. Balderrama, V. S., Sánchez, J. G., Lastra, G., Cambarau, W., Arias, S., Pallarès, J., Palomares, E., Estrada, M., & Marsal, L. F. (2018). High-efficiency organic solar cells based on a halide salt and polyfluorene polymer with a high alignment-level of the cathode selective contact. Journal of Materials Chemistry A, 6(45), 22534–22544. https://doi.org/10.1039/C8TA05778H
  14. Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theoretical and Applied Physics, 8(4), 123–134. https://doi.org/10.1007/s40094-014-0141-9
  15. Bulcha, B., Leta Tesfaye, J., Anatol, D., Shanmugam, R., Dwarampudi, L. P., Nagaprasad, N., Bhargavi, V. L. N., & Krishnaraj, R. (2021). Synthesis of Zinc Oxide Nanoparticles by Hydrothermal Methods and Spectroscopic Investigation of Ultraviolet Radiation Protective Properties. Journal of Nanomaterials, 2021, 1–10. https://doi.org/10.1155/2021/8617290
  16. Chen, H., Hu, D., Yang, Q., Gao, J., Fu, J., Yang, K., He, H., Chen, S., Kan, Z., Duan, T., Yang, C., Ouyang, J., Xiao, Z., Sun, K., & Lu, S. (2019). All-Small-Molecule Organic Solar Cells with an Ordered Liquid Crystalline Donor. Joule, 3(12), 3034–3047. https://doi.org/10.1016/j.joule.2019.09.009
  17. Chen, J., Cui, C., Li, Y., Zhou, L., Ou, Q., Li, C., Li, Y., & Tang, J. (2015). Single‐Junction Polymer Solar Cells Exceeding 10% Power Conversion Efficiency. Advanced Materials, 27(6), 1035–1041. https://doi.org/10.1002/adma.201404535
  18. Cho, J., Hwang, S., Ko, D.-H., & Chung, S. (2019). Transparent ZnO Thin-Film Deposition by Spray Pyrolysis for High-Performance Metal-Oxide Field-Effect Transistors. Materials, 12(20), 3423. https://doi.org/10.3390/ma12203423
  19. Dakhsi, K., Hartiti, B., Elfarrass, S., Tchognia, H., & Touhami, M. E. (2014). Étude des propriétés structurales, optiques et électriques des couches minces de ZnO dopées Al déposées par Spray Pyrolysis. Afrique SCIENCE
  20. De Jong, M. P., Van IJzendoorn, L. J., & De Voigt, M. J. A. (2000). Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Applied Physics Letters, 77(14), 2255–2257. https://doi.org/10.1063/1.1315344
  21. Ekmekci, M., Ela, C., & Erten‐Ela, S. (2019). Morphological characterization of aluminum‐doped zinc oxide nanomaterials ( AZO ) for dye‐sensitized solar cells. International Journal of Applied Ceramic Technology, 16(2), 727–734. https://doi.org/10.1111/ijac.13113
  22. Foo, K. L., Hashim, U., Muhammad, K., & Voon, C. H. (2014). Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Research Letters, 9(1), 429. https://doi.org/10.1186/1556-276X-9-429
  23. Fu, H., Li, Y., Yu, J., Wu, Z., Fan, Q., Lin, F., Woo, H. Y., Gao, F., Zhu, Z., & Jen, A. K.-Y. (2021). High Efficiency (15.8%) All-Polymer Solar Cells Enabled by a Regioregular Narrow Bandgap Polymer Acceptor. Journal of the American Chemical Society, 143(7), 2665–2670. https://doi.org/10.1021/jacs.0c12527
  24. Gaikwad, R. S., Jagdale, S. B., Pol, P. B., Mohite, K. C., & Pawar, B. N. (2014). Effect of Concentration of Precursor on Intrinsic ZnO Thin Films by Spray Pyrolysis. Asian Journal of Multidisciplinary Studies, 2(5)
  25. Gatou, M.-A., Lagopati, N., Vagena, I.-A., Gazouli, M., & Pavlatou, E. A. (2023). ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. nanomaterials, 13(122). https://doi.org/10.3390/ nano13010122
  26. Gopikrishnan, R., Zhang, K., Ravichandran, P., Baluchamy, S., Ramesh, V., Biradar, S., Ramesh, P., Pradhan, J., Hall, J. C., Pradhan, A. K., & Ramesh, G. T. (2010). Synthesis, characterization and biocompatibility studies of zinc oxide (ZnO) nanorods for biomedical application. Nano-Micro Letters, 2(1), 31–36. https://doi.org/10.1007/BF03353614
  27. Halls, J. J. M., Walsh, C. A., Greenham, N. C., Marseglia, E. A., Friend, R. H., Moratti, S. C., & Holmes, A. B. (1995). Efficient photodiodes from interpenetrating polymer networks. Letters to Nature
  28. Hatem, D., Nemmar, F., & Belkaid, M. S. (2023). Cellules solaires organiques: choix des matériaux, structures des dispositifs et amélioration du rendement et de la stabilité. Journal of Renewable Energies, 12(1). https://doi.org/10.54966/jreen.v12i1.121
  29. He, Z., Xiao, B., Liu, F., Wu, H., Yang, Y., Xiao, S., Wang, C., Russell, T. P., & Cao, Y. (2015). Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics, 9(3), 174–179. https://doi.org/10.1038/nphoton.2015.6
  30. He, Z., Zhong, C., Su, S., Xu, M., Wu, H., & Cao, Y. (2012). Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics, 6(9), 591–595. https://doi.org/10.1038/nphoton.2012.190
  31. Ibrahim, N. A., Nada, A. A., Eid, B. M., Al-Moghazy, M., Hassabo, A. G., & Abou-Zeid, N. Y. (2018). Nano-structured metal oxides: synthesis, characterization and application for multifunctional cotton fabric. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(3), 035014. https://doi.org/10.1088/2043-6254/aadc2c
  32. Irish, D. E., McCarroll, B., & Young, T. F. (1963). Raman Study of Zinc Chloride Solutions. The Journal of Chemical Physics, 39(12), 3436–3444. https://doi.org/10.1063/1.1734212
  33. Jørgensen, M., Norrman, K., & Krebs, F. C. (2008). Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells, 92(7), 686–714. https://doi.org/10.1016/j.solmat.2008.01.005
  34. Kaiser, N. (2002). Review of the fundamentals of thin-film growth. Applied Optics, 41(16), 3053. https://doi.org/10.1364/AO.41.003053
  35. Kärber, E., Raadik, T., Dedova, T., Krustok, J., Mere, A., Mikli, V., & Krunks, M. (2011). Photoluminescence of spray pyrolysis deposited ZnO nanorods. Nanoscale Research Letters, 6(1), 359. https://doi.org/10.1186/1556-276X-6-359
  36. Kherchachi, I. B., Saidi, H., Attaf, A., Attaf, N., Bouhdjar, A., Bendjdidi, H., Benkhetta, Y., Azizi, R., & Jlassi, M. (2016). Influence of solution flow rate on the properties of SnS2 films prepared by ultrasonic spray. Optik, 127(8), 4043–4046. https://doi.org/10.1016/j.ijleo.2016.01.120
  37. Kozawa, T., Onda, A., Yanagisawa, K., Kishi, A., & Masuda, Y. (2011). Effect of water vapor on the thermal decomposition process of zinc hydroxide chloride and crystal growth of zinc oxide. Journal of Solid State Chemistry, 184(3), 589–596. https://doi.org/10.1016/j.jssc.2011.01.015
  38. Krebs, F. C. (2009). Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials and Solar Cells, 93(4), 394–412. https://doi.org/10.1016/j.solmat.2008.10.004
  39. Krebs, F. C., & Norrman, K. (2007). Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing. Progress in Photovoltaics: Research and Applications, 15(8), 697–712. https://doi.org/10.1002/pip.794
  40. Li, G., Zhu, R., & Yang, Y. (2012). Polymer solar cells. Nature Photonics, 6(3), 153–161. https://doi.org/10.1038/nphoton.2012.11
  41. Li, T., Chen, Z., Wang, Y., Tu, J., Deng, X., Li, Q., & Li, Z. (2020). Materials for Interfaces in Organic Solar Cells and Photodetectors. ACS Applied Materials & Interfaces, 12(3), 3301–3326. https://doi.org/10.1021/acsami.9b19830
  42. Lin, C.-C., & Li, Y.-Y. (2009). Synthesis of ZnO nanowires by thermal decomposition of zinc acetate dihydrate. Materials Chemistry and Physics, 113(1), 334–337. https://doi.org/10.1016/j.matchemphys.2008.07.070
  43. Lin, Y., Adilbekova, B., Firdaus, Y., Yengel, E., Faber, H., Sajjad, M., Zheng, X., Yarali, E., Seitkhan, A., Bakr, O. M., El‐Labban, A., Schwingenschlögl, U., Tung, V., McCulloch, I., Laquai, F., & Anthopoulos, T. D. (2019). 17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS2 as a Replacement for PEDOT:PSS. Advanced Materials, 31(46), 1902965. https://doi.org/10.1002/adma.201902965
  44. Maneva, M., & Petrov, N. (1989). on the thermal decomposition of Zn(NO3)2.6H2O and its deuterated analogue. Journal of Thermal Analysis, 35
  45. Mani, G. K., & Rayappan, J. B. B. (2014). Novel and facile synthesis of randomly interconnected ZnO nanoplatelets using spray pyrolysis and their room temperature sensing characteristics. Sensors and Actuators B: Chemical, 198, 125–133. https://doi.org/10.1016/j.snb.2014.02.101
  46. Mishra, M., Banga, V. P., Kumar, M., & Gupta, M. (2024). Effect of aging on transmittance, and effect of annealing temperature on CO2 sensing of ZnO thin film deposited by spin coating. E-Prime - Advances in Electrical Engineering, Electronics and Energy, 7, 100405. https://doi.org/10.1016/j.prime.2023.100405
  47. Morinaga, Y., Sakuragi, K., Fujimura, N., & Ito, T. (1997). Effect of Ce doping on the growth of ZnO thin films. Journal of Crystal Growth, 174(1–4), 691–695. https://doi.org/10.1016/S0022-0248(97)00045-6
  48. Moustafa, E., Sánchez, J. G., Marsal, L. F., & Pallarès, J. (2021). Stability Enhancement of High-Performance Inverted Polymer Solar Cells Using ZnO Electron Interfacial Layer Deposited by Intermittent Spray Pyrolysis Approach. ACS Applied Energy Materials, 4(4), 4099–4111. https://doi.org/10.1021/acsaem.1c00455
  49. Nagayasamy, N., Gandhimathination, S., & Veerasamy, V. (2013). The Effect of ZnO Thin Film and Its Structural and Optical Properties Prepared by Sol-Gel Spin Coating Method. Open Journal of Metal, 03(02), 8–11. https://doi.org/10.4236/ojmetal.2013.32A2002
  50. Osorio, E., Sánchez, J. G., Acquaroli, L. N., Pacio, M., Ferré-Borrull, J., Pallarès, J., & Marsal, L. F. (2017). Degradation Analysis of Encapsulated and Nonencapsulated TiO2 /PTB7:PC70 BM/V2 O5 Solar Cells under Ambient Conditions via Impedance Spectroscopy. ACS Omega, 2(7), 3091–3097. https://doi.org/10.1021/acsomega.7b00534
  51. Podlogar, M., Richardson, J. J., Vengust, D., Daneu, N., Samardžija, Z., Bernik, S., & Rečnik, A. (2012). Growth of Transparent and Conductive Polycrystalline (0001)‐ZnO Films on Glass Substrates Under Low‐Temperature Hydrothermal Conditions. Advanced Functional Materials, 22(15), 3136–3145. https://doi.org/10.1002/adfm.201200214
  52. Rama Denny, Y., Firmansyah, T., Trenggono, A., Wijaya, D., Antarnusa, G., & Suherman, A. (2020). Effect of Precursor Concentration and Annealed Substrate Temperature on the Crystal Structure, Electronic and Optical Properties of ZnO thin film. The Journal of Pure and Applied Chemistry Research, 9(1), 57–65. https://doi.org/10.21776/ub.jpacr.2020.009.01.514
  53. Ravichandran, K., Jabena Begum, N., Snega, S., & Sakthivel, B. (2016). Properties of Sprayed Aluminum-Doped Zinc Oxide Films—A Review. Materials and Manufacturing Processes, 31(11), 1411–1423. https://doi.org/10.1080/10426914.2014.930961
  54. Salsberg, E., & Aziz, H. (2019). Degradation of PEDOT:PSS hole injection layers by electrons in organic light emitting devices. Organic Electronics, 69, 313–319. https://doi.org/10.1016/j.orgel.2019.03.009
  55. Shrisha, B. V., Bhat, S., Kushavah, D., & Gopalakrishna Naik, K. (2016). Hydrothermal growth and characterization of Al-doped ZnO nanorods. Materials Today: Proceedings, 3(6), 1693–1701. https://doi.org/10.1016/j.matpr.2016.04.061
  56. Soylu, M., & Coskun, M. (2018). Controlling the properties of ZnO thin films by varying precursor concentration. Journal of Alloys and Compounds, 741, 957–968. https://doi.org/10.1016/j.jallcom.2018.01.079
  57. Sun, C., Pan, F., Bin, H., Zhang, J., Xue, L., Qiu, B., Wei, Z., Zhang, Z.-G., & Li, Y. (2018). A low cost and high performance polymer donor material for polymer solar cells. Nature Communications, 9(1), 743. https://doi.org/10.1038/s41467-018-03207-x
  58. Thankalekshmi, R. R., & Rastogi, A. C. (2012). Structure and optical band gap of ZnO1−xSx thin films synthesized by chemical spray pyrolysis for application in solar cells. Journal of Applied Physics, 112(6), 063708. https://doi.org/10.1063/1.4754014
  59. Wong, K. W., Yip, H. L., Luo, Y., Wong, K. Y., Lau, W. M., Low, K. H., Chow, H. F., Gao, Z. Q., Yeung, W. L., & Chang, C. C. (2002). Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer. Applied Physics Letters, 80(15), 2788–2790. https://doi.org/10.1063/1.1469220
  60. Xu, L., Wang, X., Qian, L., Zhu, Y., Luo, X., Wang, W., Xu, X., & Xu, J. (2020). The dependence of the optical properties of ZnO nanorod arrays on their growth time. Optik, 202, 163634. https://doi.org/10.1016/j.ijleo.2019.163634
  61. Yu, D., Mu, S., Liu, L., & Wang, W. (2015). Preparation of electroless silver plating on aramid fiber with good conductivity and adhesion strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 483, 53–59. https://doi.org/10.1016/j.colsurfa.2015.07.021
  62. Yu, G., Gao, J., Hummelen, J. C., Wudl, F., & Heeger, A. J. (1995). Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 270(5243), 1789–1791. https://doi.org/10.1126/science.270.5243.1789
  63. Zhang, D., Wu, X., Han, N., & Chen, Y. (2013). Chemical vapor deposition preparation of nanostructured ZnO particles and their gas-sensing properties. Journal of Nanoparticle Research, 15(4), 1580. https://doi.org/10.1007/s11051-013-1580-y
  64. Zhou, R., Jiang, Z., Yang, C., Yu, J., Feng, J., Adil, M. A., Deng, D., Zou, W., Zhang, J., Lu, K., Ma, W., Gao, F., & Wei, Z. (2019). All-small-molecule organic solar cells with over 14% efficiency by optimizing hierarchical morphologies. Nature Communications, 10(1), 5393. https://doi.org/10.1038/s41467-019-13292-1
  65. Znaidi, L., Soler Illia, G. J. A. A., Benyahia, S., Sanchez, C., & Kanaev, A. V. (2003). Oriented ZnO thin films synthesis by sol–gel process for laser application. Thin Solid Films, 428(1–2), 257–262. https://doi.org/10.1016/S0040-6090(02)01219-1

Last update:

No citation recorded.

Last update: 2025-05-24 09:00:52

No citation recorded.