skip to main content

|  Cover Letter
Cover letter
Subject
Type Cover Letter
  Download (17KB)    Indexing metadata

Design and Optimization of an Energy Storage System for Off-Grid Rural Communities

1Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro, 76062, Pakistan., Pakistan

2Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar., Qatar

Received: 10 Mar 2025; Published: 9 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Access to reliable electricity remains a critical challenge in many rural areas of developing countries, particularly in Pakistan, where traditional grid expansion is often economically unfeasible. This research aims to design and optimize an off-grid microgrid system powered by Renewable Energy (RE) sources, specifically solar energy, integrated with an efficient Energy Storage System (ESS).  The proposed off-grid system features a generation RE source with an ESS for continuous power supply during periods of low solar irradiance, poor weather conditions, and nighttime, which includes Lithium-Ion Battery (LIB), Sodium-Ion Battery (NIB), and Hydrogen Storage System (HSS). HOMER Pro software is used to simulate and optimize a system sized 150 kW, assessing various energy storage technologies, including LIB, and NIB, with HSS, to determine the most suitable option for rural electrification. Key results demonstrate that the integration of renewable sources with ESSs significantly enhances reliability, providing a consistent energy supply while reducing dependence on fossil fuels. The techno-economic analysis reveals that the most cost-effective configuration includes solar Photovoltaic (PV), NIB, and minimal use of a HSS for backup power, resulting in a Net Present Cost (NPC) of 1.53 $M and the Levelized Cost of Energy (LCOE) of 0.0649 $/kWh. The proposed system shows the capability to maintain power reliability with no unmet load. 

Note: This article has supplementary file(s).

Keywords: Rural Electrification, Solar Photovoltaic, Energy Storage System, Optimization, Net Present Cost, Levelized Cost of Energy.

Article Metrics:

  1. Abd El-Sattar, H., S. Kamel, H. M. Sultan, H. M. Zawbaa and F. Jurado (2022). "Optimal design of photovoltaic, biomass, fuel cell, hydrogen tank units and electrolyzer hybrid system for a remote area in Egypt." Energy Reports 8: 9506-9527.DOI: https://doi.org/10.1016/j.egyr.2022.07.060
  2. Abdin, Z. and W. Mérida (2019). "Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis." Energy Conversion and management 196: 1068-1079
  3. Ahmed, K. S. and S. P. Karthikeyan (2018). "Modified penalized quoted cost method for transmission loss allocation including reactive power demand in deregulated electricity market." Sustainable Energy, Grids and Networks 16: 370-379.DOI: https://doi.org/10.1016/j.segan.2018.10.004
  4. Al-Sharafi, A., A. Z. Sahin, T. Ayar and B. S. Yilbas (2017). "Techno-economic analysis and optimization of solar and wind energy systems for power generation and hydrogen production in Saudi Arabia." Renewable and Sustainable Energy Reviews 69: 33-49.DOI: https://doi.org/10.1016/j.rser.2016.11.157
  5. Alam, M., K. Kumar and V. Dutta (2021). "Design and economic evaluation of low voltage DC microgrid based on hydrogen storage." International Journal of Green Energy 18(1): 66-79
  6. Askarzadeh, A. and L. dos Santos Coelho (2015). "A novel framework for optimization of a grid independent hybrid renewable energy system: A case study of Iran." Solar energy 112: 383-396.DOI: https://doi.org/10.1016/j.solener.2014.12.013
  7. Ayeng'o, S. P., T. Schirmer, K.-P. Kairies, H. Axelsen and D. U. Sauer (2018). "Comparison of off-grid power supply systems using lead-acid and lithium-ion batteries." Solar Energy 162: 140-152.DOI: https://doi.org/10.1016/j.solener.2017.12.049
  8. Ayodele, T. R., A. Jimoh, J. L. Munda and J. T. Agee (2014). "Viability and economic analysis of wind energy resource for power generation in Johannesburg, South Africa." International Journal of Sustainable Energy 33(2): 284-303
  9. Aziz, A. S., M. F. N. Tajuddin, M. R. Adzman, A. Azmi and M. A. Ramli (2019). "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq." Renewable energy 138: 775-792.DOI: https://doi.org/10.1016/j.renene.2019.02.004
  10. Babatunde, O., J. Munda and Y. Hamam (2022). "Off-grid hybrid photovoltaic–micro wind turbine renewable energy system with hydrogen and battery storage: Effects of sun tracking technologies." Energy Conversion and Management 255: 115335.DOI: https://doi.org/10.1016/j.enconman.2022.115335
  11. Bakhtiari, H. and R. A. Naghizadeh (2018). "Multi‐criteria optimal sizing of hybrid renewable energy systems including wind, photovoltaic, battery, and hydrogen storage with ɛ‐constraint method." IET renewable power generation 12(8): 883-892.DOI: https://doi.org/10.1049/iet-rpg.2017.0706
  12. Belkhiria, S., C. Briki, M. H. Dhaou, N. Sdiri, A. Jemni, F. Askri and S. B. Nasrallah (2017). "Experimental study of metal–hydrogen reactor behavior during desorption under heating by electromagnetic induction." international journal of hydrogen energy 42(26): 16645-16656.DOI: https://doi.org/10.1016/j.ijhydene.2017.04.295
  13. Boglou, V., C. S. Karavas, A. Karlis and K. Arvanitis (2022). "An intelligent decentralized energy management strategy for the optimal electric vehicles' charging in low‐voltage islanded microgrids." International Journal of Energy Research 46(3): 2988-3016.DOI: https://doi.org/10.1002/er.7358
  14. Chauhan, A. and R. Saini (2016). "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India." Energy 94: 138-156.DOI: https://doi.org/10.1016/j.energy.2015.10.136
  15. Dargahi, A., S. Ploix, A. Soroudi and F. Wurtz (2014). "Optimal household energy management using V2H flexibilities." COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering 33(3): 777-792.DOI: https://doi.org/10.1108/COMPEL-10-2012-0223
  16. Das, M., M. A. K. Singh and A. Biswas (2019). "Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches–case of a radio transmitter station in India." Energy conversion and management 185: 339-352.DOI: https://doi.org/10.1016/j.enconman.2019.01.107
  17. Dash, R. L., B. Mohanty and P. K. Hota (2023). "Energy, economic and environmental (3E) evaluation of a hybrid wind/biodiesel generator/tidal energy system using different energy storage devices for sustainable power supply to an Indian archipelago." Renewable Energy Focus 44: 357-372.DOI: https://doi.org/10.1016/j.ref.2023.01.004
  18. Diemuodeke, E., A. Addo, C. Oko, Y. Mulugetta and M. Ojapah (2019). "Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm." Renewable Energy 134: 461-477.DOI: https://doi.org/10.1016/j.renene.2018.11.055
  19. El-Sattar, H. A., S. Kamel, H. M. Sultan, H. Zawbaa and F. Jurado (2022). "Optimal design of photovoltaic, biomass, fuel cell, hydrogen tank units and electrolyzer hybrid system for a remote area in Egypt."
  20. El Fathi, A. and A. Outzourhit (2018). "Technico-economic assessment of a lead-acid battery bank for standalone photovoltaic power plant." Journal of Energy Storage 19: 185-191
  21. Farinis, G. Κ. and F. D. Kanellos (2021). "Integrated energy management system for Microgrids of building prosumers." Electric Power Systems Research 198: 107357
  22. Fodhil, F., A. Hamidat and O. Nadjemi (2019). "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria." Energy 169: 613-624.DOI: https://doi.org/10.1016/j.energy.2018.12.049
  23. Gebrehiwot, K., M. A. H. Mondal, C. Ringler and A. G. Gebremeskel (2019). "Optimization and cost-benefit assessment of hybrid power systems for off-grid rural electrification in Ethiopia." Energy 177: 234-246.DOI: https://doi.org/10.1016/j.energy.2019.04.095
  24. Gharavi, H., M. Ardehali and S. Ghanbari-Tichi (2015). "Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions." Renewable Energy 78: 427-437.DOI: https://doi.org/10.1016/j.renene.2015.01.029
  25. Ghorbani, N., A. Kasaeian, A. Toopshekan, L. Bahrami and A. Maghami (2018). "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability." Energy 154: 581-591.DOI: https://doi.org/10.1016/j.energy.2017.12.057
  26. Hasan, T., K. Emami, R. Shah, N. Hassan, V. Belokoskov and M. Ly (2023). "Techno-economic assessment of a hydrogen-based islanded microgrid in north-east." Energy Reports 9: 3380-3396.DOI: https://doi.org/10.3390/en11040757
  27. Hussain Mirjat, N., M. A. Uqaili, K. Harijan, M. W. Mustafa, M. M. Rahman and M. W. A. Khan (2018). "Multi-criteria analysis of electricity generation scenarios for sustainable energy planning in Pakistan." Energies 11(4): 757
  28. IEA (2023). "International Energy Agency."
  29. Ishraque, M. F., S. A. Shezan, M. Ali and M. Rashid (2021). "Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources." Applied Energy 292: 116879.DOI: https://doi.org/10.1016/j.apenergy.2021.116879
  30. Jahannoosh, M., S. A. Nowdeh, A. Naderipour, H. Kamyab, I. F. Davoudkhani and J. J. Klemeš (2021). "New hybrid meta-heuristic algorithm for reliable and cost-effective designing of photovoltaic/wind/fuel cell energy system considering load interruption probability." Journal of Cleaner Production 278: 123406.DOI: https://doi.org/10.1016/j.jclepro.2020.123406
  31. Jahannoush, M. and S. A. Nowdeh (2020). "Optimal designing and management of a stand-alone hybrid energy system using meta-heuristic improved sine–cosine algorithm for Recreational Center, case study for Iran country." Applied Soft Computing 96: 106611.DOI: https://doi.org/10.1016/j.asoc.2020.106611
  32. Jiang, J., R. Zhou, H. Xu, H. Wang, P. Wu, Z. Wang and J. Li (2022). "Optimal sizing, operation strategy and case study of a grid-connected solid oxide fuel cell microgrid." Applied Energy 307: 118214.DOI: https://doi.org/10.1016/j.apenergy.2021.118214
  33. Justo, J. J., F. Mwasilu, J. Lee and J.-W. Jung (2013). "AC-microgrids versus DC-microgrids with distributed energy resources: A review." Renewable and sustainable energy reviews 24: 387-405.DOI: https://doi.org/10.1016/j.rser.2013.03.067
  34. Kaabeche, A. and Y. Bakelli (2019). "Renewable hybrid system size optimization considering various electrochemical energy storage technologies." Energy conversion and management 193: 162-175.DOI: https://doi.org/10.1016/j.enconman.2019.04.064
  35. Kamran, M., R. Asghar, M. Mudassar, S. R. Ahmed, M. R. Fazal, M. I. Abid, M. U. Asghar and M. Z. Zameer (2018). "Designing and optimization of stand-alone hybrid renewable energy system for rural areas of Punjab, Pakistan." Int. J. Renew. Energy Res 8(4): 2385-2397
  36. Kapen, P. T., B. A. M. Nouadje, V. Chegnimonhan, G. Tchuen and R. Tchinda (2022). "Techno-economic feasibility of a PV/battery/fuel cell/electrolyzer/biogas hybrid system for energy and hydrogen production in the far north region of cameroon by using HOMER pro." Energy Strategy Reviews 44: 100988
  37. Khan, N., S. Dilshad, R. Khalid, A. R. Kalair and N. Abas (2019). "Review of energy storage and transportation of energy." Energy Storage 1(3): e49.DOI: https://doi.org/10.1002/est2.49
  38. Khatri, S. A., N. H. Mirjat, K. Harijan, M. A. Uqaili, S. F. Shah, P. H. Shaikh and L. Kumar (2022). "An overview of the current energy situation of Pakistan and the way forward towards green energy implementation." Energies 16(1): 423.DOI: https://doi.org/10.3390/en16010423
  39. Kim, H. and T. Y. Jung (2018). "Independent solar photovoltaic with Energy Storage Systems (ESS) for rural electrification in Myanmar." Renewable and Sustainable Energy Reviews 82: 1187-1194.DOI: https://doi.org/10.1016/j.rser.2017.09.037
  40. Kitson, J., S. J. Williamson, P. Harper, C. McMahon, G. Rosenberg, M. Tierney, K. Bell and B. Gautam (2018). "Modelling of an expandable, reconfigurable, renewable DC microgrid for off-grid communities." Energy 160: 142-153.DOI: https://doi.org/10.1016/j.energy.2018.06.219
  41. Konneh, K. V., O. B. Adewuyi, M. M. Gamil, A. M. Fazli and T. Senjyu (2023). "A scenario-based multi-attribute decision making approach for optimal design of a hybrid off-grid system." Energy 265: 125663.DOI: https://doi.org/10.1016/j.energy.2022.125663
  42. Kumar, K., M. Alam, D. Rakshit and V. Dutta (2019). "Operational characteristics of metal hydride energy storage system in microgrid." Energy Conversion and Management 187: 176-190.DOI: https://doi.org/10.1016/j.enconman.2019.03.019
  43. Kumar, K., M. Alam, S. Verma and V. Dutta (2020). "Analysis of metal hydride storage on the basis of thermophysical properties and its application in microgrid." Energy Conversion and Management 222: 113217.DOI: https://doi.org/10.1016/j.enconman.2020.113217
  44. Kumar, K., J. Srivastava, D. Rakshit and V. Dutta (2017). "Performance characterization of zero carbon emission microgrid in subtropical climate based on experimental energy and exergy analyses." Energy Conversion and Management 154: 224-243.DOI: https://doi.org/10.1016/j.enconman.2017.10.044
  45. Kumar, P., N. Pal and H. Sharma (2022). "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India." Energy 247: 123560.DOI: https://doi.org/10.1016/j.energy.2022.123560
  46. Li, C., D. Zhou, H. Wang, Y. Lu and D. Li (2020). "Techno-economic performance study of stand-alone wind/diesel/battery hybrid system with different battery technologies in the cold region of China." Energy 192: 116702.DOI: https://doi.org/10.1016/j.energy.2019.116702
  47. Luta, D. N. and A. K. Raji (2018). "Decision-making between a grid extension and a rural renewable off-grid system with hydrogen generation." International journal of hydrogen Energy 43(20): 9535-9548.DOI: https://doi.org/10.1016/j.ijhydene.2018.04.032
  48. Luthander, R., D. Lingfors, J. Munkhammar and J. Widén (2015). "Self-consumption enhancement of residential photovoltaics with battery storage and electric vehicles in communities." Proceedings of the ECEEE Summer Study on Energy Efficiency, Hyères, France 11.DOI: https://doi.org/10.1016/j.energy.2016.06.039
  49. Ma, H., Y. Zhang, S. Sun, T. Liu and Y. Shan (2023). "A comprehensive survey on NSGA-II for multi-objective optimization and applications." Artificial Intelligence Review 56(12): 15217-15270.DOI: https://doi.org/10.1007/s10462-023-10526-z
  50. Mariama, S. M., A. Scipioni, B. Davat and M. El Ganaoui (2018). The idea of feeding a rural area in Comoros with a micro-grid system with renewable energy source with hydrogen storages. 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), IEEE
  51. Masrur, H., H. O. R. Howlader, M. Elsayed Lotfy, K. R. Khan, J. M. Guerrero and T. Senjyu (2020). "Analysis of techno-economic-environmental suitability of an isolated microgrid system located in a remote island of Bangladesh." Sustainability 12(7): 2880.DOI: https://doi.org/10.3390/su12072880
  52. Memon, S. A. and R. N. Patel (2021). "An overview of optimization techniques used for sizing of hybrid renewable energy systems." Renewable Energy Focus 39: 1-26.DOI: https://doi.org/10.1016/j.ref.2021.07.007
  53. Mirjat, N. H., M. A. Uqaili, K. Harijan, G. D. Walasai, M. A. H. Mondal and H. Sahin (2018). "Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis." Energy 165: 512-526.DOI: https://doi.org/10.1016/j.energy.2018.10.012
  54. Moghaddam, M. J. H., A. Kalam, S. A. Nowdeh, A. Ahmadi, M. Babanezhad and S. Saha (2019). "Optimal sizing and energy management of stand-alone hybrid photovoltaic/wind system based on hydrogen storage considering LOEE and LOLE reliability indices using flower pollination algorithm." Renewable energy 135: 1412-1434.DOI: https://doi.org/10.1016/j.renene.2018.09.078
  55. Moran, C., E. Moylan, J. Reardon, T. A. Gunawan, P. Deane, S. Yousefian and R. F. Monaghan (2023). "A flexible techno-economic analysis tool for regional hydrogen hubs–a case study for Ireland." International Journal of Hydrogen Energy 48(74): 28649-28667.DOI: https://doi.org/10.1016/j.ijhydene.2023.04.100
  56. Mulenga, E., A. Kabanshi, H. Mupeta, M. Ndiaye, E. Nyirenda and K. Mulenga (2023). "Techno-economic analysis of off-grid PV-Diesel power generation system for rural electrification: A case study of Chilubi district in Zambia." Renewable energy 203: 601-611.DOI: https://doi.org/10.1016/j.renene.2022.12.112
  57. Mulumba, A. N. and H. Farzaneh (2023). "Techno-economic analysis and dynamic power simulation of a hybrid solar-wind-battery-flywheel system for off-grid power supply in remote areas in Kenya." Energy Conversion and Management: X 18: 100381.DOI: https://doi.org/10.1016/j.ecmx.2023.100381
  58. N'guessan, S. A., K. S. Agbli, S. Fofana and D. Hissel (2020). "Optimal sizing of a wind, fuel cell, electrolyzer, battery and supercapacitor system for off-grid applications." International Journal of Hydrogen Energy 45(8): 5512-5525.DOI: https://doi.org/10.1016/j.ijhydene.2019.05.212
  59. Nadaleti, W. C., G. B. Dos Santos and V. A. Lourenço (2020). "The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis." International Journal of Hydrogen Energy 45(3): 1373-1384.DOI: https://doi.org/10.1016/j.ijhydene.2019.08.199
  60. Ngila, A. and H. Farzaneh (2023). "Energy conversion and management: X techno-economic analysis and dynamic power simulation of a hybrid solar-wind-battery-flywheel system for off-grid power supply in remote areas in Kenya introduction." Energy Convers Manag X 18: 100381
  61. Nikolaidis, P. and A. Poullikkas (2017). "A comparative overview of hydrogen production processes." Renewable and sustainable energy reviews 67: 597-611.DOI: https://doi.org/10.1016/j.rser.2016.09.044
  62. Patel, A. M. and S. K. Singal (2019). "Optimal component selection of integrated renewable energy system for power generation in stand-alone applications." Energy 175: 481-504.DOI: https://doi.org/10.1016/j.energy.2019.03.055
  63. Phurailatpam, C., B. S. Rajpurohit and L. Wang (2018). "Planning and optimization of autonomous DC microgrids for rural and urban applications in India." Renewable and Sustainable Energy Reviews 82: 194-204.DOI: https://doi.org/10.1016/j.rser.2017.09.022
  64. Samy, M., S. Barakat and H. Ramadan (2020). "Techno-economic analysis for rustic electrification in Egypt using multi-source renewable energy based on PV/wind/FC." International Journal of Hydrogen Energy 45(20): 11471-11483.DOI: https://doi.org/10.1016/j.ijhydene.2019.04.038
  65. Sanajaoba, S. (2019). "Optimal sizing of off-grid hybrid energy system based on minimum cost of energy and reliability criteria using firefly algorithm." Solar Energy 188: 655-666.DOI: https://doi.org/10.1016/j.solener.2019.06.049
  66. Seedahmed, M. M., M. A. Ramli, H. R. Bouchekara, M. S. Shahriar, A. H. Milyani and M. Rawa (2022). "A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia." Alexandria Engineering Journal 61(7): 5183-5202.DOI: https://doi.org/10.1016/j.aej.2021.10.041
  67. Sen, R. and S. C. Bhattacharyya (2014). "Off-grid electricity generation with renewable energy technologies in India: An application of HOMER." Renewable energy 62: 388-398.DOI: https://doi.org/10.1016/j.renene.2013.07.028
  68. Shahzad, M. K., A. Zahid, T. ur Rashid, M. A. Rehan, M. Ali and M. Ahmad (2017). "Techno-economic feasibility analysis of a solar-biomass off grid system for the electrification of remote rural areas in Pakistan using HOMER software." Renewable energy 106: 264-273.DOI: https://doi.org/10.1016/j.renene.2017.01.033
  69. Shaikh, A., P. H. Shaikh, S. A. Khatri, M. Saeed, H. Shah and L. Kumar (2025). "Performance Optimization in Lead-Free Perovskite Solar Cell: A Comparative Approach." IEEE Access.DOI: https://doi.org/10.1109/ACCESS.2025.3543244
  70. Shaikh, A., A. M. Soomro, M. Kumar and H. Shaikh (2022). "Assessment of a stand-alone hybrid PV-hydrogen based electric vehicle charging station model using HOMER." Journal of Applied Engineering & Technology (JAET) 6(1): 11-20.DOI: https://doi.org/10.55447/jaet.06.01.59
  71. Singh, A., A. Sharma, S. Rajput, A. Bose and X. Hu (2022). "An investigation on hybrid particle swarm optimization algorithms for parameter optimization of PV cells." Electronics 11(6): 909.DOI: https://doi.org/10.3390/electronics11060909
  72. Singh, S., M. Singh and S. C. Kaushik (2016). "Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system." Energy Conversion and Management 128: 178-190
  73. Sultan, H. M., A. S. Menesy, S. Kamel, A. Korashy, S. Almohaimeed and M. Abdel-Akher (2021). "An improved artificial ecosystem optimization algorithm for optimal configuration of a hybrid PV/WT/FC energy system." Alexandria Engineering Journal 60(1): 1001-1025.DOI: https://doi.org/10.1016/j.aej.2020.10.027
  74. Von Colbe, J. B., J.-R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D. M. Grant, M. N. Guzik and I. Jacob (2019). "Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives." international journal of hydrogen energy 44(15): 7780-7808.DOI: https://doi.org/10.1016/j.ijhydene.2019.01.104
  75. Wang, D. and M. Grimmelt (2023). "Climate influence on the optimal stand-alone microgrid system with hybrid storage–a comparative study." Renewable Energy 208: 657-664.DOI: https://doi.org/10.1016/j.renene.2023.03.045
  76. Yang, H., W. Zhou, L. Lu and Z. Fang (2008). "Optimal sizing method for stand-alone hybrid solar–wind system with LPSP technology by using genetic algorithm." Solar energy 82(4): 354-367.DOI: https://doi.org/10.1016/j.solener.2007.08.005
  77. Zakeri, B. and S. Syri (2015). "Electrical energy storage systems: A comparative life cycle cost analysis." Renewable and sustainable energy reviews 42: 569-596.DOI: https://doi.org/10.1016/j.rser.2014.10.011
  78. Zarate-Perez, E., E. Rosales-Asensio, A. Gonzalez-Martinez, M. De Simon-Martin and A. Colmenar-Santos (2022). "Battery energy storage performance in microgrids: A scientific mapping perspective." Energy Reports 8: 259-268.DOI: https://doi.org/10.1016/j.egyr.2022.06.116
  79. Zhang, W., A. Maleki, M. A. Rosen and J. Liu (2018). "Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage." Energy 163: 191-207.DOI: https://doi.org/10.1016/j.energy.2018.08.112
  80. Zhang, W., A. Maleki, M. A. Rosen and J. Liu (2019). "Sizing a stand-alone solar-wind-hydrogen energy system using weather forecasting and a hybrid search optimization algorithm." Energy conversion and management 180: 609-621.DOI: https://doi.org/10.1016/j.enconman.2018.08.102
  81. Zia, M. F., E. Elbouchikhi, M. Benbouzid and J. M. Guerrero (2019). "Energy management system for an islanded microgrid with convex relaxation." IEEE Transactions on Industry Applications 55(6): 7175-7185.DOI: https://doi.org/10.1109/TIA.2019.2917357

Last update:

No citation recorded.

Last update: 2026-02-08 00:40:51

No citation recorded.