skip to main content

Development of FeCo/C and AgFeCo/C cathode catalysts for xylitol membraneless alkaline fuel cells

1Department of Physical Sciences, Faculty of Science and Digital Innovation, Thaksin University, Phatthalung Campus, Papayom District, Phatthalung Province, 93210, Thailand

2Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, 85 Sathonlamark Road, Warin Chamrap District, Ubon Ratchathani Province, 34190, Thailand

3Faculty of Engineering, Thaksin University, Phatthalung Campus, Papayom District, Phatthalung Province, 93210, Thailand

Received: 13 Mar 2025; Revised: 26 May 2025; Accepted: 10 Jun 2025; Available online: 26 Jun 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

In the study, researchers developed and characterized xylitol membraneless alkaline fuel cell catalysts—namely FeCo/C, AgFeCo/C, and Pd/C—for cathodes and anodes. The first part of our investigation details the catalysts' morphology and elemental composition. STEM, EDS, and EDS mapping confirmed that the catalysts exhibited a small, lumpy structure, with the alloy well-dispersed across the support material. The X-ray diffraction pattern for the cathode catalyst reveals that the spectral lines corresponding to the Ag metal peak at a 2θ maximum of 38.12 degrees exhibit a 111 pattern, suggesting the existence of Ag metal particles in a face-centered cubic (fcc) arrangement. Meanwhile, the metal peaks for Fe3O4 and Co3O4 appear at maximum 2θ positions of 35.45 and 30.09 degrees, respectively, displaying 311 and 220 patterns, which indicate the presence of Fe3O4 and Co3O4 particles with spinel cubic structures. In the case of the anode catalyst, the spectral line for the Pd metal peak at a 2θ maximum of 40.12 degrees shows a 111 pattern, confirming the presence of Pd metal particles with a face-centered cubic (fcc) structure. Second, to determine the electrocatalytic properties, cyclic voltammetry (CV) measurements were conducted with xylitol as the fuel, utilizing concentrations between 0.1 and 0.5 M in 0.1 M KOH. For the cathode-side FeCo/C and AgFeCo/C catalysts, oxidation resistance was observed, and the reduction reaction diminished with increasing xylitol concentration, attributed to interfering non-conductive hydrocarbons. Conversely, Pd/C catalysts exhibited remarkable catalytic performance, particularly at 0.1 M xylitol solution, where the oxidation peak current density reached a maximum of 0.9 mA·cm⁻² at -0.09 V. Finally, the researchers reported that the Pd/C-AgFeCo/C catalyst achieved the highest current density of 0.36 A·m⁻² and a maximum power density of 0.129 W·m⁻² for xylitol fuel cell applications.

Fulltext View|Download
Keywords: Alkaline fuel cell; Cathode; Catalyst; Xylitol; Fuel cell
Funding: This research was supported by Thailand Science Research and Innovation (TSRI), Thailand funded 2024.

Article Metrics:

  1. Agasti, N., & Kaushik, N.K. (2014). One pot synthesis of crystalline silver nanoparticles. American Journal of Nanomaterials, 2(1), 4-7. https://doi.org/10.12691/ajn-2-1-2
  2. Ashok, A., Kumar, A., Matin, M.A., Tarlochan, F. (2018). Synthesis of highly efficient bifunctional Ag/Co3O4 catalyst for oxygen reduction and oxygen evolution reactions in alkaline medium. ACS Omega, 3(7), 7745–7756 https://doi.org/10.1021/acsomega.8b00799
  3. Askari, M.B., Salarizadeh, P., & Bartolomeo, A.D. (2022). NiCo2O4-rGO/Pt as a robust nanocatalyst for sorbitol electrooxidation. International Journal of Energy Research, 46(5), 6745–6754. https://doi.org/10.1002/er.7614
  4. Basu, D., & Basu, S. (2010). A study on direct glucose and fructose alkaline fuel cell. Electrochimica Acta, 55(20), 5775–5779. https://doi.org/10.1016/j.electacta.2010.05.016
  5. Chatenet, M., Molina-Concha, M. B., El-Kissi, N., Parrour, G., Diard, J. P., (2009). Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions. Electrochimica Acta, 54, 4426-4435. https://doi.org/10.1016/j.electacta.2009.03.019
  6. Chen, Y.H., Zhou, J.F., Mullarkey, D., Connell, R.O., Schmitt, W., Venkatesan, M., Coey, M., Zhang, H.Z. (2015). Synthesis, characterization and magnetic properties of ultrafine Co3O4 octahedra. AIP Advances, 5(8), 087122. https://doi.org/10.1063/1.4928494
  7. Chutia, B., & Bharali, P. (2022). Oxygen deficient interfacial effect in CeO2-modified Fe2O3/C for oxygen reduction reaction in alkaline electrolyte. Catalysis Communications, 164, 106432. https://doi.org/10.1016/j.catcom.2022.106432
  8. Cruz-Reyes, I., Trujillo-Navarrete, B., García-Tapia, K., Salazar-Gastéluma, M.I., Paraguay-Delgado, F., & Félix-Navarro, R.M. (2020). Pd/MnO2 as a bifunctional electrocatalyst for potential application in alkaline fuel cells.Fuel, 279, 118470. https://doi.org/10.1016/j.fuel.2020.118470
  9. Daşdelen, Z., Özcan, A., & Özcan, A. (2021). Preparation of anode catalysts for sorbitol electrooxidation based on the nanocomposites of fumed silica, reduced graphene oxide and gold nanoparticles. International Journal of Hydrogen Energy, 46(55),28121-28133. https://doi.org/10.1016/j.ijhydene.2021.06.060
  10. Dai, Y., Ding, J., Li, J., Li, Y., Zong, Y., Zhang, P., Wang, Z., & Liu, X. (2021). N, S and transition-metal co-doped graphene nanocomposites as high-performance catalyst for glucose oxidation in a direct glucose alkaline fuel cell. Nanomaterials, 11(1), 202. https://doi.org/10.3390/nano11010202
  11. Ding, Y., Wang, Y., Su, L., Bellagamba, M., Zhang, H., & Leia, Y. (2010). Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors and Bioelectronics, 26(2), 542–548. https://doi.org/10.1016/j.bios.2010.07.050
  12. Dong, F., Liu, X., Irfan, M., Yang, l., Li, S., Ding, J., Li, Y., Khan, I.U., & Zhang, P. (2019). Macaroon-like FeCo2O4 modified activated carbon anode for enhancing power generation in direct glucose fuel cell. International Journal of Hydrogen Energy, 44(16), 8178-8187. https://doi.org/10.1016/j.ijhydene.2019.02.031
  13. Elsheikh, A., & McGregor, J. (2021). Synthesis and Characterization of PdAgNi/C Trimetallic Nanoparticles for Ethanol Electrooxidation. Nanomaterials, 11(9), 2244.. https://doi.org/10.3390/nano11092244
  14. Ferriday T.B., & Middleton, P.H. (2021). Alkaline fuel cells: theory and application. International Journal of Hydrogen Energy, 46(35), 18489-18510.. https://doi.org/10.1016/j.ijhydene.2021.02.203
  15. Filho, Y.F., Carvalho da Cruz, A.C., Pedicini, R., Salgado, J.R., Rodrigues, R.V., Luz, P.P., Garcia-Segura, S., & Josimar, R. (2022). PdAg/C Electrocatalysts Synthesized by Thermal Decomposition of Polymeric Precursors Improve Catalytic Activity for Ethanol Oxidation Reaction. Catalysts, 12(1), 96. https://doi.org/10.3390/catal12010096
  16. Gao, M., Liu, X., Irfan, M., Shi, J., Wang, X., & Zhang, P. (2018). Nickle- cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. International Journal ofHydrogen Energy, 43(3), 1805-1815. https://doi.org/10.1016/j.ijhydene.2017.11.114
  17. Ghouri, Z.K., Barakat, N.A.M., Obaid, M., Lee, J.H., & Kim, H.Y.(2015). Co/CeO2-decorated carbon nanofibers as effective on-precious electro-catalyst for fuel cells application in alkaline medium. Ceramics International, 41(2), 2271–2278. https://doi.org/10.1016/j.ceramint.2014.10.031
  18. Ho, J.H., Li, Y., Dai, Y., Kim, T., Wang, J., Ren, J., Yun, H.S., & Liu, X. (2021). Ionothermal synthesis of N-doped carbon supported CoMn2O4 nanoparticles as ORR catalyst in direct glucose alkaline fuel cell. International Journal of Hydrogen Energy, 46, 20503-20515. https://doi.org/10.1016/j.ijhydene.2021.03.145
  19. Hu, J., Lu, H., Li, M., Xiao, G., Li, M., Xiang, X., Lu, Z., & Qiao, Y. (2022). Cobalt valence modulating in CoOx incorporated carbon nanofiber for enhanced glucose electrooxidation. Materials Reports: Energy, 2(2), 100091. https://doi.org/10.1016/j.matre.2022.100091
  20. Huang, J., Simons, P., Sunada, Y., Rupp, J., & Yagi, S. (2021). Pt-catalyzed d-glucose oxidation reactions for glucose fuel cells. Journal of The Electrochemical Society, 168, 064511. https://doi.org/10.1149/1945-7111/ac0949
  21. Hunsom, M. (2012). PEM fuel and electrochemical analysis. Chulalongkorn University Press. Bangkok
  22. Kannan, R., Kim, A.R., Nahm, K.S., & Yoo, D.J. (2016). Facile instep synthesis of palladium nanoparticle/carbon@carbon nanotube composites for electrooxidation of xylitol. Journal of Nanoscience and Nanotechnology, 16(3), 2587–2592. https://doi.org/10.1166/jnn.2016.10769
  23. Koscher, G., Kordesh, K., (2004).Can refillable alkaline methanol-air systems replace metal-air cells?. Journal of Power Sources, 136, 215-219. https://doi.org/10.1016/j.jpowsour.2004.03.005
  24. Liu, H., Yang, D.H., Wang, X.Y., Zhang, J., & Han, B.H. (2021). N-dope graphitic carbon shell-encapsulated FeCo alloy derived from metal–polyphenol network and melamine sponge for oxygen reduction, oxygen evolution, and hydrogen evolution reactions in alkaline media. Journal of Colloid and Interface Science, 581, 362-373.. https://doi.org/10.1016/j.jcis.2020.07.055
  25. Liu, T. (2022). Glucose fuel cells and membranes: a brief overview and literature analysis. Sustainability, 14, 8376. https://doi.org/10.3390/su14148376
  26. López-Coronel, A., Luis, J., Pacheco, T., Jennifer, A., Álvarez-López, A., Guerra-Balcázar, M., Álvarez-Contreras, L., & Arjona, A. N. (2020). Highly active PdNi bimetallic nanocubeselectrocatalysts for the ethylene glycol electro-oxidation in alkaline medium. Applied Surface Science, 530, 147210. https://doi.org/10.1016/j.apsusc.2020.147210
  27. Masjod, P., Suwanraksa, K., & Chaiburi, C. (2020). Development of binary catalysts support for the electro-oxidation reaction enhancement of glycerol alkaline fuel cell. ASEAN Journal of Scientific and Technological Reports (AJSTR), 23(2):55-64
  28. Matsuoka, K., Iriyama, Y., Abe, T., Matsuoka, M., & Ogumi, Z. (2005). Alkaline direct alcohol fuel cells using an anion exchange membrane. Journal of Power Sources, 150, 27-31. https://doi.org/10.1016/j.jpowsour.2005.02.020
  29. Prats, H., Chan, K., (2021). The determination of the HOR/HER reaction mechanism from experimental kinetic data, Physical Chemistry Chemical Physics, 23, 27150. https://doi.org/10.1039/d1cp04134g
  30. Qiao, J., Xu, L., Ding, L., Shi, P., Baker, R., Zhang, J., (2013). Effect of KOH concentration on the oxygen reduction kinetics catalyzed by heat-treated Co-Pyridine/C electrocatalysts. International Journal of Electrochemical Science, 8, 1189-1208. https://doi.org/10.1016/S1452-3981(23)14091-0
  31. Silva, V.A.J., Andrade, P.L., Silva, M.P.C., Bustamante, A., Valladares, L., & Aguiar, J.A. (2013). Synthesis and characterization of Fe3O4 nanoparticles coated with fucan polysaccharides. Journal of Magnetism and Magnetic Materials, 343, 138–143. https://doi.org/10.1016/j.jmmm.2013.04.062
  32. Suwanraksa, K., Chaiburi, C., & Bunyord, S. (2022). Efficiency of cathode catalyst between Ag/C and AgMnxOy/C for glucose membraneless alkaline fuel cell. Journal of Applied Research on Science and Technology (JARST), 21(2), 126-135
  33. Suwanraksa, K., Masjod, P., & Chaiburi, C. (2021). Bimetallic of Pd-CeOx/C electrocatalyst for electro-oxidation reaction ofxylitol fuels in alkaline solutions. KKU Science Journal, 49(2), 165-173
  34. Suzuki, T., Fujino, M., & Yamada, Y. (2023). Formation of a palladium catalyst layer using an anionic surfactant and subsequent fabrication of a glucose fuel cell. Journal of Chemical Education, 100(12), 4780−4785. https://doi.org/10.1021/acs.jchemed.3c00555
  35. Torres-Pacheco, L.J., Leon-Rodriguez, A.D., Álvarez-Contreras, L., Guerra-Balcazar, M., & Arjona, N. (2020). Sorbitol electro-oxidation reaction on sub<10 nm PtAu bimetallic nanoparticles. Electrochimica Acta, 353, 136593. https://doi.org/10.1016/j.electacta.2020.136593
  36. Torres-Pacheco, L.J., Leon-Rodriguez, A.D., Bañuelos, J.A., Álvarez-Contreras, L., Guerra-Balcázar, M., & Arjona, N. (2022). Electrocatalytic oxidation of sorbitol on PdxAuy/C bimetallic nanocatalysts. Fuel, 314, 122788. https://doi.org/10.1016/j.fuel.2021.122788
  37. Kruusenberg, I., Matisen, L., Shah, Q., Kannan, A.M., & Tammeveski, K. (2012). Non-platinum cathode catalysts for alkaline Membrane fuel cells. International Journal of Hydrogen Energy, 37, 4406-4412. https://doi.org/10.1016/j.ijhydene.2011.11.143
  38. Wang, Q., Chena, F., Liua, Y., Gebremariama, T.T., Wang, J., Anb, L., & Johnston, R.L. (2018). AgSn intermetallics as highly selectiveand active oxygen reduction electrocatalysts inmembraneless alkaline fuel cells. Journal of Power Sources, 404, 106-117. https://doi.org/10.1016/j.jpowsour.2018.10.013
  39. Weiss, J., Zhang, H., & Zelenay, P. (2020). Recent progress in the durability of Fe-N-C oxygen reduction electrocatalysts for polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 875, 114696. http://dx.doi.org/10.1016/j.jelechem.2020.114696
  40. Xu, W., Zeng, R., Rebarchik, M., Posada-Borbon, A., Li, H., Pollock, C.J., Mavrikakis, M., & Abruna, H.D. (2024). Atomically dispersed Zn/Co−N−C as ORR electrocatalysts for alkaline fuel cells. Journal of the American Chemical Society, 146, 2593−2603. https://doi.org/10.1021/jacs.3c11355
  41. Xu, X., Dong, X., Li, D., Qi, M., & Huang, H. (2023). ZIF-8-derived three-dimensional nitrogen-doped porous carbon as a Pt catalyst support for electrocatalytic oxidation of glucose in a glucose fuel cell. ACS Applied Energy Materials, 6, 2886−2896. https://doi.org/10.1021/acsaem.2c03833
  42. Yang, J., Wang, J., Zhu, L., Gao, Q., Zeng, W., Wang, J., & Li, Y. (2018). Enhanced electrocatalytic activity of a hierarchical CeO2@MnO2 core-shell composite for oxygen reduction reaction. Ceramics International, 44(18), 23073-23079. https://doi.org/10.1016/j.ceramint.2018.09.111
  43. Zhiani M., Abedini A. & Majidi S. (2018). Comparison of electro-catalytic activity of Fe-Ni-Co/C and Pd/C nanoparticles for glucose electro-oxidation in alkaline half-cell and direct glucose fuel cell. Electrocatalysis, 9, 735–743. https://doi.org/10.1007/s12678-018-0483-1
  44. Zhong, J., Zhu, Z., Xu, Q., Peng L., Luo, K, & Yuan D. (2023). FeCo alloy nanoparticles supported on Co−N−C cubes derived from imidazolate frameworks as a bifunctional electrocatalyst for rechargeable zinc−air batteries. Energy Fuels, 37, 13489−13497. https://doi.org/10.1021/acs.energyfuels.3c02221

Last update:

No citation recorded.

Last update: 2025-07-10 20:29:28

No citation recorded.