skip to main content

Electrical and morphological variations with sintering temperature of electron transport layer in perovskite solar cell

1Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia

2Department of Mathematics, Physics and Electrical Engineering, Ellison Building, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom

Received: 7 Nov 2024; Revised: 17 Apr 2025; Accepted: 28 May 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The typical PSCs essentially made up of electron transporting material (compact and mesoporous), perovskite absorber layer and hole transporting material. The compact TiO2 primary function is allow the movement of photogenerated electron to the device circuit from the active layer and to block the photogenerated holes from recombination at TCO substrate. Mesoporous TiO2 mainly functions to receive the photogenerated charge from the perovskite absorber and enable thicker formation of perovskite absorber due to the voids in the TiO2 mesoscopic framework. Many studies have implemented 500 ℃ as the standard in sintering the TiO2 layer. However, the effects of sintering temperature of ETL TiO2 have never been systematically described in terms of morphology and photoelectrochemical properties.  In this manuscript, we have studied the morphological and photoelectrochemical properties of ETM TiO2 thin film prepared at different sintering temperature. Spin coated TiO2 layers were examined using X-ray Diffraction for crystal structure and phase identification, FESEM for morphological analysis, UV-Vis Spectroscopy for optical absorbance and transmittance of light and PEC test for LSV, EIS and TPC analyses. Surface roughness was not a major influencing factor of photocurrent density rather than the anatase phase of the TiO2 thin film is more important. It was revealed that at 500 ℃, the TiO2 thin film possess the highest photocurrent density with good stability and lowest charge transfer and series resistance. Higher sintering temperature of 550 ℃, would introduce lattice defects in the TiO2 thin film which will reduce photocurrent density and increase resistance. This work offers a systematic evaluation of the ETL in terms of morphological and photoelectrochemical properties, which can be applied when selecting suitable material for ETL in perovskite solar devices.
Fulltext View|Download
Keywords: perovskite solar cells; electron transport layer; TiO2; sintering temperature; charge transfer resistance
Funding: Universiti Kebangsaan Malaysia under contract DIP-2024-003, Universiti Kebangsaan Malaysia under contract MI-2017-007; Universiti Kebangsaan Malaysia under contract GUP-2024-108

Article Metrics:

  1. Abd Mutalib, M., Ahmad Ludin, N., Nik Ruzalman, N. A. A., Barrioz, V., Sepeai, S., Mat Teridi, M. A., Su’ait, M. S., Ibrahim, M. A. & Sopian, K. (2018). Progress towards highly stable and lead-free perovskite solar cells. Materials for Renewable and Sustainable Energy, 7(2), 7. https://doi.org/10.1007/s40243-018-0113-0
  2. Abd Mutalib, M., Ahmad Ludin, N., Su’ait, M. S., Davies, M., Sepeai, S., Mat Teridi, M. A., Noh, M. F. M. & Ibrahim, M. A. (2022). Performance-Enhancing Sulfur-Doped TiO2 Photoanodes for Perovskite Solar Cells. Applied Sciences, 12(1), 429. https://doi.org/10.3390/app12010429
  3. Abd Mutalib, M., Aziz, F., Fauzi, A., Norharyati, W., Salleh, W., Yusof, N., Jaafar, J., Soga, T., Sahdan, M. Z. & Ludin, N. A. (2018). Towards high performance perovskite solar cells : A review of morphological control and HTM development. Applied Materials Today, 13, 69–82. https://doi.org/10.1016/j.apmt.2018.08.006
  4. Amore Bonapasta, A., Filippone, F., Mattioli, G., & Alippi, P. (2009). Oxygen vacancies and OH species in rutile and anatase TiO2 polymorphs. Catalysis Today, 144(1–2), 177–182. https://doi.org/10.1016/j.cattod.2009.01.047
  5. Chao, S., Petrovsky, V., & Dogan, F. (2010). Effects of sintering temperature on the microstructure and dielectric properties of titanium dioxide ceramics. Journal of Materials Science, 45(24), 6685–6693. https://doi.org/10.1007/s10853-010-4761-4
  6. Chen, C., Cheng, Y., Dai, Q., & Song, H. (2015). Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications. Scientific Reports, 5. https://doi.org/10.1038/srep17684
  7. Chibani, O., Challali, F., Touam, T., Chelouche, A., & Djouadi, D. (2019). Optical waveguiding characteristics of TiO2 sol–gel thin films for photonic devices: effects of thermal annealing. Optical Engineering, 58(04), 1. https://doi.org/10.1117/1.oe.58.4.047101
  8. Di Giacomo, F., Zardetto, V., D’Epifanio, A., Pescetelli, S., Matteocci, F., Razza, S., Di Carlo, A., Licoccia, S., Kessels, W. M. M., Creatore, M. & Brown, T. M. (2015). Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates. Advanced Energy Materials, 5(8), 1401808–1401817. https://doi.org/10.1002/aenm.201401808
  9. Gao, S. A., Xian, A. P., Cao, L. H., Xie, R. C., & Shang, J. K. (2008). Influence of calcining temperature on photoresponse of TiO2 film under nitrogen and oxygen in room temperature. Sensors and Actuators, B: Chemical, 134(2), 718–726. https://doi.org/10.1016/j.snb.2008.06.017
  10. Gomes, J., Lincho, J., Domingues, E., Quinta-Ferreira, R., & Martins, R. (2019). N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water, 11(2), 373. https://doi.org/10.3390/w11020373
  11. Green, M. A., Ho-Baillie, A., Snaith, H. J., & Martin A. Green, A. H.-B. and H. J. S. (2014). The emergence of perovskite solar cells. Nat Photon, 8(7), 506–514. https://doi.org/10.1038/nphoton.2014.134
  12. Han, J., Park, K., Tan, S., Vaynzof, Y., Xue, J., Diau, E.W.-G., Bawendi, M.G., Lee, J.-W., Jeon, I., 2025. Perovskite solar cells. Nature Reviews Methods Primers 5, 3. https://doi.org/10.1038/s43586-024-00373-9
  13. Im, J. H., Jang, I. H., Pellet, N., Grätzel, M., & Park, N. G. (2014). Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology, 9(11), 927–932. https://doi.org/10.1038/nnano.2014.181
  14. Im, S.H., Olasoji, A.J., 2024. Perspective Chapter: TiO2 Electron Transporting Layers for Perovskite Solar Cells, in: Montalvo Romero, C., Aguilar, C.A., Moctezuma, E. (Eds.), Titanium Dioxide - Uses, Applications, and Advances. IntechOpen, Rijeka. https://doi.org/10.5772/intechopen.1007266
  15. Kavan, L., Tétreault, N., Moehl, T., & Grätzel, M. (2014). Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. Journal of Physical Chemistry C, 118(30), 16408–16418. https://doi.org/10.1021/jp4103614
  16. Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C.-S., Chang, J. A., Lee, Y. H., Kim, H-j., Sarkar, A., Nazeeruddin, M. K., Gratzel, M., & Seok, S. Il. (2013). Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6), 486–491. https://doi.org/10.1038/nphoton.2013.80
  17. Li, C., Kattawar, G.W., Yang, P., 2004. Effects of surface roughness on light scattering by small particles. J Quant Spectrosc Radiat Transf 89, 123–131. https://doi.org/10.1016/j.jqsrt.2004.05.016
  18. Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395–398. https://doi.org/10.1038/nature12509
  19. Lu, H., Ma, Y., Gu, B., Tian, W., & Li, L. (2015). Identifying the optimum thickness of electron transport layers for highly efficient perovskite planar solar cells. Journal of Materials Chemistry A, 3(32), 16445–16452. https://doi.org/10.1039/c5ta03686k
  20. Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2015). Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films. Scientific Reports, 4, 282. https://doi.org/10.1038/srep04043
  21. Mahmood, K., Swain, B. S., & Amassian, A. (2015). 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays. Advanced Energy Materials, 5(17), 1500568. https://doi.org/10.1002/aenm.201500568
  22. Meyer, G. J. (2010). The 2010 Millennium Technology Grand Prize: Dye-Sensitized Solar Cells. ACS Nano, 4(8), 4337–4343. https://doi.org/10.1021/nn101591h
  23. Mohamad Noh, Mohamad F., Soh, M. F., Riza, M. A., Safaei, J., Mohd Nasir, S. N. F., Mohamad Sapian, N. W., Yap, C. C., Ibrahim, M. A., Ludin, N. A. & Mat Teridi, M. A. (2018). Effect of Film Thickness on Photoelectrochemical Performance of SnO2 Prepared via AACVD. Physica Status Solidi (B) Basic Research, 255(6). https://doi.org/10.1002/pssb.201700570
  24. Mohamad Noh, Mohamad Firdaus, Teh, C. H., Daik, R., Lim, E. L., Yap, C. C., Ibrahim, M. A., Ludin, N. A., Yusoff, A. R. M., Jang, J. & Mat Teridi, M. A. (2018). The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C, 6(4), 682–712. https://doi.org/10.1039/c7tc04649a
  25. NREL Best Research-Cell Efficiencies. (n.d.). Retrieved November 9, 2016, from https://www.nrel.gov/pv/cell-efficiency.html
  26. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., Zakeeruddin, S. M., Tress, W., Abate, A., Hagfeldt, A. & Grätzel, M. (2016). Cesium-containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy Environ. Sci., 9(6), 1989–1997. https://doi.org/10.1039/C5EE03874J
  27. Soh-Yusoff, M. F., Noh, M. F. M., Teh, C. H., Ludin, N. A., Ibrahim, M. A., Teridi, M. A. M., & Yusoff, A. R. M. (2019). Kesan Ketebalan Filem Terhadap Fotoelektrokimia Titania Dioksida (TiO2) Yang Disediakan Melalui Kaedah Pemendapan Bantuan Aerosol Wap Kimia (AACVD). Jurnal Kejuruteraan, 31(1), 85–92. https://doi.org/10.17576/jkukm-2019-31(1)-10
  28. Upama, M. B., Elumalai, N. K., Mahmud, M. A., Wang, D., Haque, F., Gonçales, V. R., Gooding, J. J., Wright, M., Xu, C. & Uddin, A. (2017). Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells. Organic Electronics: Physics, Materials, Applications, 50, 279–289. https://doi.org/10.1016/j.orgel.2017.08.001
  29. Wood, S., O’Connor, D., Jones, C. W., Claverley, J. D., Blakesley, J. C., Giusca, C., & Castro, F. A. (2017). Transient photocurrent and photovoltage mapping for characterisation of defects in organic photovoltaics. Solar Energy Materials and Solar Cells, 161, 89–95. https://doi.org/10.1016/j.solmat.2016.11.029
  30. Wu, R., Yang, B., Xiong, J., Cao, C., Huang, Y., Wu, F., Sun, J., Zhou, C., Huang, H. & Yang, J. (2015). Dependence of device performance on the thickness of compact TiO2 layer in perovskite/TiO2 planar heterojunction solar cells. Journal of Renewable and Sustainable Energy, 7(4), 043105. https://doi.org/10.1063/1.4926578
  31. Wu, Y., Yang, X., Chen, H., Zhang, K., Qin, C., Liu, J., Peng, W., Islam, A., Bi, E. & Han, L. (2014). Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Applied Physics Express, 7(5), 052301. https://doi.org/10.7567/APEX.7.052301
  32. Yang, T., Park, S., Kim, T. G., Shin, D. S., Suh, K., & Park, J. (2017). Ultraviolet photodetector using pn junction formed by transferrable hollow n-TiO2 nano-spheres monolayer. Optics Express, 25(25), 30843. https://doi.org/10.1364/oe.25.030843
  33. Ye, T., Xing, J., Petrović, M., Chen, S., Chellappan, V., Subramanian, G. S., Sum, T. C., Liu, B., Xiong, Q. & Ramakrishna, S. (2017). Temperature effect of the compact TiO2 layer in planar perovskite solar cells: An interfacial electrical, optical and carrier mobility study. Solar Energy Materials and Solar Cells, 163, 242–249. https://doi.org/10.1016/j.solmat.2017.01.005
  34. Yoo, Y., Seo, G., Park, H.J., Kim, J., Jang, J., Cho, W., Kim, J.H., Shin, J., Choi, J.S., Lee, D., Baek, S.-W., Lee, S., Kang, S.M., Kim, M., Sung, Y.-E., Bae, S., 2024. Low-temperature rapid UV sintering of sputtered TiO 2 for flexible perovskite solar modules. J Mater Chem A Mater 12, 1562–1572. https://doi.org/10.1039/D3TA05666J
  35. Zhang, S., Lei, L., Yang, S., Li, X., Liu, Y., Gao, Q., Gao, X., Cao, Q. & Yu, Y. (2016). Influence of TiO2 Blocking Layer Morphology on Planar Heterojunction Perovskite Solar Cells. Chemistry Letters, 45(6), 592–594. https://doi.org/10.1246/cl.160059

Last update:

No citation recorded.

Last update: 2025-07-10 06:01:31

No citation recorded.