1Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, 50 275, Indonesia
2Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, 60111, Indonesia
3Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya, Indonesia
4 Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
BibTex Citation Data :
@article{IJRED61241, author = {Didi Anggoro and Didik Prasetyoko and Hartati Hartati and Zaki Zakaria and Brilliant Le Monde and Maulida Nurdiani}, title = {Free hydrogen-deoxygenation of waste cooking oil into green diesel over Ni-Marble waste catalyst: Optimization and economic analysis}, journal = {International Journal of Renewable Energy Development}, volume = {14}, number = {6}, year = {2025}, keywords = {Marble Waste; Deoxygenation; Waste Cooking Oil; Optimization; Economic Analysis}, abstract = { Diversifying energy through alternative sources, such as biofuels, is a practical and accessible option in Indonesia. This study aimed to optimize the yield of biofuel (green diesel) using Ni/marble waste as a catalyst. Deoxygenation offers a promising route for converting waste cooking oil (WCO) into valuable products. A Box–Behnken Design (BBD) was applied to assess the effects of key variables on the deoxygenation process using Response Surface Methodology (RSM). The variables included reaction time (2–6 h), reaction temperature (360–380 °C), and catalyst weight (1–3% w/w), with conversion percentage as the response. The results showed that reaction time and catalyst weight significantly influenced WCO deoxygenation (p < 0.05). The optimum conditions for maximum conversion were a reaction temperature of 373.64 °C, a catalyst weight of 3.45% w/w, and a reaction time of 4.35 h. Under these conditions, hydrocarbon selectivity reached 92.26%. Paraffins were the dominant fraction, confirming that the Ni/marble catalyst efficiently promoted deoxygenation with high selectivity toward C15–C18 hydrocarbons. These findings align with the proposed reaction mechanism, which involves decarboxylation, decarbonylation, and hydrodeoxygenation pathways. An economic evaluation under optimal conditions estimated a profit of \$1.0469 per batch, demonstrating that converting waste cooking oil into green diesel is both technically feasible and economically attractive. Overall, integrating waste-derived catalysts with optimized deoxygenation technology provides a sustainable and profitable solution. }, pages = {1171--1180} doi = {10.61435/ijred.2025.61241}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/61241} }
Refworks Citation Data :
Diversifying energy through alternative sources, such as biofuels, is a practical and accessible option in Indonesia. This study aimed to optimize the yield of biofuel (green diesel) using Ni/marble waste as a catalyst. Deoxygenation offers a promising route for converting waste cooking oil (WCO) into valuable products. A Box–Behnken Design (BBD) was applied to assess the effects of key variables on the deoxygenation process using Response Surface Methodology (RSM). The variables included reaction time (2–6 h), reaction temperature (360–380 °C), and catalyst weight (1–3% w/w), with conversion percentage as the response. The results showed that reaction time and catalyst weight significantly influenced WCO deoxygenation (p < 0.05). The optimum conditions for maximum conversion were a reaction temperature of 373.64 °C, a catalyst weight of 3.45% w/w, and a reaction time of 4.35 h. Under these conditions, hydrocarbon selectivity reached 92.26%. Paraffins were the dominant fraction, confirming that the Ni/marble catalyst efficiently promoted deoxygenation with high selectivity toward C15–C18 hydrocarbons. These findings align with the proposed reaction mechanism, which involves decarboxylation, decarbonylation, and hydrodeoxygenation pathways. An economic evaluation under optimal conditions estimated a profit of $1.0469 per batch, demonstrating that converting waste cooking oil into green diesel is both technically feasible and economically attractive. Overall, integrating waste-derived catalysts with optimized deoxygenation technology provides a sustainable and profitable solution.
Article Metrics:
Last update:
Last update: 2025-10-21 21:46:10
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.