skip to main content

Free hydrogen-deoxygenation of waste cooking oil into green diesel over Ni-Marble waste catalyst: Optimization and economic analysis

1Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang, 50 275, Indonesia

2Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Keputih, Sukolilo, Surabaya, 60111, Indonesia

3Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C UNAIR, Mulyorejo, Surabaya, Indonesia

4 Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia

View all affiliations
Received: 21 Mar 2025; Revised: 18 Jul 2025; Accepted: 18 Sep 2025; Available online: 10 Oct 2025; Published: 1 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Diversifying energy through alternative sources, such as biofuels, is a practical and accessible option in Indonesia. This study aimed to optimize the yield of biofuel (green diesel) using Ni/marble waste as a catalyst. Deoxygenation offers a promising route for converting waste cooking oil (WCO) into valuable products. A Box–Behnken Design (BBD) was applied to assess the effects of key variables on the deoxygenation process using Response Surface Methodology (RSM). The variables included reaction time (2–6 h), reaction temperature (360–380 °C), and catalyst weight (1–3% w/w), with conversion percentage as the response. The results showed that reaction time and catalyst weight significantly influenced WCO deoxygenation (p < 0.05). The optimum conditions for maximum conversion were a reaction temperature of 373.64 °C, a catalyst weight of 3.45% w/w, and a reaction time of 4.35 h. Under these conditions, hydrocarbon selectivity reached 92.26%. Paraffins were the dominant fraction, confirming that the Ni/marble catalyst efficiently promoted deoxygenation with high selectivity toward C15–C18 hydrocarbons. These findings align with the proposed reaction mechanism, which involves decarboxylation, decarbonylation, and hydrodeoxygenation pathways. An economic evaluation under optimal conditions estimated a profit of $1.0469 per batch, demonstrating that converting waste cooking oil into green diesel is both technically feasible and economically attractive. Overall, integrating waste-derived catalysts with optimized deoxygenation technology provides a sustainable and profitable solution.

Fulltext View|Download
Keywords: Marble Waste; Deoxygenation; Waste Cooking Oil; Optimization; Economic Analysis
Funding: Indonesia Collaboration Research (RKI)

Article Metrics:

  1. Aliana-Nasharuddin, N., Asikin-Mijan, N., Abdulkareem-Alsultan, G., Saiman, M. I., Alharthi, F. A., Alghamdi, A. A., & Taufiq-Yap, Y. H. (2019). Production of green diesel from catalytic deoxygenation of chicken fat oil over a series binary metal oxide-supported MWCNTs. RSC Advances, 10(2), 626–642. https://doi.org/10.1039/c9ra08409f
  2. Ameen, M., Azizan, M. T., Yusup, S., Ramli, A., Shahbaz, M., & Aqsha, A. (2020). Process optimization of green diesel selectivity and understanding of reaction intermediates. Renewable Energy, 149, 1092–1106. https://doi.org/10.1016/j.renene.2019.10.108
  3. Asikin-Mijan, N., Lee, H. V., Taufiq-Yap, Y. H., Juan, J. C., & Rahman, N. A. (2016). Pyrolytic-deoxygenation of triglyceride via natural waste shell derived Ca(OH)2 nanocatalyst. Journal of Analytical and Applied Pyrolysis, 117, 46–55. https://doi.org/10.1016/j.jaap.2015.12.017
  4. Chiaramonti, D., Buffi, M., Rizzo, A. M., Lotti, G., & Prussi, M. (2016). Bio-hydrocarbons through catalytic pyrolysis of used cooking oils and fatty acids for sustainable jet and road fuel production. Biomass and Bioenergy, 95, 424–435. https://doi.org/10.1016/j.biombioe.2016.05.035
  5. Choo, M. Y., Oi, L. E., Ling, T. C., Ng, E. P., Lin, Y. C., Centi, G., & Juan, J. C. (2020). Deoxygenation of triolein to green diesel in the H2-free condition: Effect of transition metal oxide supported on zeolite Y. Journal of Analytical and Applied Pyrolysis, 147(February), 104797. https://doi.org/10.1016/j.jaap.2020.104797
  6. Chueaphetr, R., Suwannaruang, T., Khunphonoi, R., Khemthong, P., & Wantala, K. (2023). Enhancing deoxygenation of waste cooking palm oil over CaO-MgO catalyst modified by K2O for green bio-fuel. Fuel, 354(February), 129350. https://doi.org/10.1016/j.fuel.2023.129350
  7. de Oliveira Camargo, M., Castagnari Willimann Pimenta, J. L., de Oliveira Camargo, M., & Arroyo, P. A. (2020). Green diesel production by solvent-free deoxygenation of oleic acid over nickel phosphide bifunctional catalysts: Effect of the support. Fuel, 281(April), 118719. https://doi.org/10.1016/j.fuel.2020.118719
  8. Di Vito Nolfi, G., Gallucci, K., Mucciante, V., & Rossi, L. (2025). Production of Green Diesel via the Ni/Al Mo Hydrotalcite Catalyzed Deoxygenation of Rapeseed Oil. Molecules, 30(8), 1–23. https://doi.org/10.3390/molecules30081699
  9. Doliente, S. S., Narayan, A., Tapia, J. F. D., Samsatli, N. J., Zhao, Y., & Samsatli, S. (2020). Bio-aviation Fuel: A Comprehensive Review and Analysis of the Supply Chain Components. Frontiers in Energy Research, 8(July), 1–38. https://doi.org/10.3389/fenrg.2020.00110
  10. Febriansyar, R. A., Riyanto, T., Istadi, I., Anggoro, D. D., & Jongsomjit, B. (2023). Bifunctional CaCO3/HY Catalyst in the Simultaneous Cracking-Deoxygenation of Palm Oil to Diesel-Range Hydrocarbons. Indonesian Journal of Science and Technology, 8(2), 281–306. https://doi.org/10.17509/ijost.v8i2.55494
  11. Goh, B. H. H., Chong, C. T., & Ng, J. H. (2023). Hydrogen-free Deoxygenation of Waste Cooking Oil over Unreduced Bimetallic NiCo Catalysts for Biojet Fuel Production. Chemical Engineering Transactions, 106(August), 721–726. https://doi.org/10.3303/CET23106121
  12. Gousi, M., Andriopoulou, C., Bourikas, K., Ladas, S., Sotiriou, M., Kordulis, C., & Lycourghiotis, A. (2017). Green diesel production over nickel-alumina co-precipitated catalysts. Applied Catalysis A: General, 536, 45–56. https://doi.org/10.1016/j.apcata.2017.02.010
  13. Hafriz, R. S. R. M., Salmiaton, A., Yunus, R., & Taufiq-Yap, Y. H. (2018). Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 13(3), 489–501. https://doi.org/10.9767/bcrec.13.3.1956.489-501
  14. Hafriz, R. S. R. M., Shafizah, I. N., Arifin, N. A., Salmiaton, A., Yunus, R., Yap, Y. H. T., & Shamsuddin, A. H. (2021). Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil. Renewable Energy, 178, 128–143. https://doi.org/10.1016/j.renene.2021.06.074
  15. Han, F., Guan, Q., & Li, W. (2015). Deoxygenation of methyl palmitate over SiO2-supported nickel phosphide catalysts: effects of pressure and kinetic investigation. RSC Advances, 5(130), 107533–107539. https://doi.org/10.1039/c5ra22973a
  16. Hongloi, N., Prapainainar, P., & Prapainainar, C. (2022). Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts. Molecular Catalysis, 523(January 2021), 111696. https://doi.org/10.1016/j.mcat.2021.111696
  17. Hsu, H., Chang, Y., & Wang, W. (2021). Techno-economic analysis of used cooking oil to jet fuel production under uncertainty through three- , two- , and one-step conversion processes. Journal of Cleaner Production, 289, 125778. https://doi.org/10.1016/j.jclepro.2020.125778
  18. Istadi, I., Riyanto, T., Anggoro, D. D., Pramana, C. S., & Ramadhani, A. R. (2023). High Acidity and Low Carbon-Coke Formation Affinity of Co-Ni/ZSM-5 Catalyst for Renewable Liquid Fuels Production through Simultaneous Cracking-Deoxygenation of Palm Oil. Bulletin of Chemical Reaction Engineering and Catalysis, 18(2), 222–237. https://doi.org/10.9767/bcrec.17974
  19. Jeon, K. W., Park, H. R., Lee, Y. L., Kim, J. E., Jang, W. J., Shim, J. O., & Roh, H. S. (2022). Deoxygenation of non-edible fatty acid for green diesel production: Effect of metal loading amount over Ni/MgO–Al2O3 on the catalytic performance and reaction pathway. Fuel, 311(November 2021), 122488. https://doi.org/10.1016/j.fuel.2021.122488
  20. Kaewmeesri, R., Nonkumwong, J., Witoon, T., Laosiripojana, N., & Faungnawakij, K. (2020). Effect of water and glycerol in deoxygenation of coconut oil over bimetallic nico/sapo-11 nanocatalyst under n2 atmosphere. Nanomaterials, 10(12), 1–15. https://doi.org/10.3390/nano10122548
  21. Kordouli, E., Sygellou, L., Kordulis, C., Bourikas, K., & Lycourghiotis, A. (2017). Probing the synergistic ratio of the NiMo/Γ-Al2O3 reduced catalysts for the transformation of natural triglycerides into green diesel. Applied Catalysis B: Environmental, 209, 12–22. https://doi.org/10.1016/j.apcatb.2017.02.045
  22. Krobkrong, N., Itthibenchapong, V., Khongpracha, P., & Faungnawakij, K. (2018). Deoxygenation of oleic acid under an inert atmosphere using molybdenum oxide-based catalysts. Energy Conversion and Management, 167(April), 1–8. https://doi.org/10.1016/j.enconman.2018.04.079
  23. Kubicka, D. (2019). Upgrading of lipids to hydrocarbon fuels via (hydro)deoxygenation. Chemical Catalysts for Biomass Upgrading, 469–496. https://doi.org/10.1002/9783527814794.ch11
  24. Lycourghiotis, S., Kordouli, E., Kordulis, C., & Bourikas, K. (2021). Transformation of residual fatty raw materials into third generation green diesel over a nickel catalyst supported on mineral palygorskite. Renewable Energy, 180, 773–786. https://doi.org/10.1016/j.renene.2021.08.059
  25. Mulyatun, M., Istadi, I., & Widayat, W. (2023). Synthesis and Characterization of Physically Mixed V2O5.CaO as Bifunctional Catalyst for Methyl Ester Production from Waste Cooking Oil. International Journal of Renewable Energy Development, 12(2), 381–389. https://doi.org/10.14710/ijred.2023.51047
  26. Nenyoo, P., Wongsurakul, P., Kiatkittipong, W., Kaewtrakulchai, N., Srifa, A., Eiad-Ua, A., & Assabumrungrat, S. (2024). Catalytic Deoxygenation of Palm Oil Over Iron Phosphide Supported on Nanoporous Carbon Derived from Vinasse Waste for Green Diesel Production. ACS Omega. https://doi.org/10.1021/acsomega.4c05000
  27. Nikolopoulos, I., Kogkos, G., Tsavatopoulou, V. D., Kordouli, E., Bourikas, K., Kordulis, C., & Lycourghiotis, A. (2023). Nickel—Alumina Catalysts for the Transformation of Vegetable Oils into Green Diesel: The Role of Preparation Method, Activation Temperature, and Reaction Conditions. Nanomaterials, 13(3). https://doi.org/10.3390/nano13030616
  28. Oi, L. E., Choo, M. Y., Lee, H. V., Taufiq-Yap, Y. H., Cheng, C. K., & Juan, J. C. (2020). Catalytic deoxygenation of triolein to green fuel over mesoporous TiO2 aided by in situ hydrogen production. International Journal of Hydrogen Energy, 45(20), 11605–11614. https://doi.org/10.1016/j.ijhydene.2019.07.172
  29. Onlamnao, K., Phromphithak, S., & Tippayawong, N. (n.d.). P a g e | Generating Organic Liquid Products from Catalytic Cracking of Used Cooking Oil over Mechanically Mixed Catalysts. Journal of Renewable Energy Development, 9(2), 159–166. https://doi.org/10.14710/ijred.9.2.157-166
  30. Papageridis, K. N., Charisiou, N. D., Douvartzides, S., Sebastian, V., Hinder, S. J., Baker, M. A., AlKhoori, S., Polychronopoulou, K., & Goula, M. A. (2020). Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil. Renewable Energy, 162, 1793–1810. https://doi.org/10.1016/j.renene.2020.09.133
  31. Peters, M. A., Onwudili, J. A., & Wang, J. (2024). Fuel-range liquid hydrocarbon products from catalytic deoxygenation of mixtures of fatty acids obtained from the hydrolysis of rapeseed oil. Sustainable Energy & Fuels. https://doi.org/10.1039/d4se00864b
  32. Prangklang, D., Tumnantong, D., Yoosuk, B., Ngamcharussrivichai, C., & Prasassarakich, P. (2023). Selective Deoxygenation of Waste Cooking Oil to Diesel-Like Hydrocarbons Using Supported and Unsupported NiMoS2 Catalysts. ACS Omega, 8(43), 40921–40933. https://doi.org/10.1021/acsomega.3c06188
  33. Reza, M. S., Zhanar Baktybaevna, I., Afroze, S., Kuterbekov, K., Kabyshev, A., Bekmyrza, K. Z., Kubenova, M. M., Bakar, M. S. A., Azad, A. K., Roy, H., & Islam, M. S. (2023). Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review. Energies, 16(14), 1–39. https://doi.org/10.3390/en16145547
  34. Riyandi, R., Rinaldi, N., Yunarti, R. T., Dwiatmoko, A. A., & Simanjuntak, F. S. H. (2024). Effect of various silica-supported nickel catalyst on the production of bio-hydrocarbons from oleic acid. International Journal of Renewable Energy Development, 13(4), 601–607. https://doi.org/10.61435/ijred.2024.60054
  35. Scaldaferri, C. A., & Pasa, V. M. D. (2019). Green diesel production from upgrading of cashew nut shell liquid. Renewable and Sustainable Energy Reviews, 111(May), 303–313. https://doi.org/10.1016/j.rser.2019.04.057
  36. Serrano, D. P., Arroyo, M., Briones, L., Hernando, H., & Escola, J. M. (2021). Selective decarboxylation of fatty acids catalyzed by Pd-supported hierarchical ZSM-5 zeolite. Energy and Fuels, 35(21), 17167–17181. https://doi.org/10.1021/acs.energyfuels.1c01373
  37. Shi, F., Wang, H., Chen, Y., Lu, Y., Hou, D., Liu, C., Lu, Y., Lin, X., Yang, X., Zheng, Z., & Zheng, Y. (2023). Green diesel-like hydrocarbon production by H2-free catalytic deoxygenation of oleic acid via Ni/MgO-Al2O3 catalysts: Effect of the metal loading amount. Journal of Environmental Chemical Engineering, 11(5), 0–3. https://doi.org/10.1016/j.jece.2023.110520
  38. Siraj, M., & Ceylan, S. (2025). Investigation of the effect of catalyst support on oleic acid catalytic deoxygenation for green diesel production. Journal of Porous Materials, 32(3), 941–952. https://doi.org/10.1007/s10934-024-01725-2
  39. Sousa, F. P., Silva, L. N., de Rezende, D. B., de Oliveira, L. C. A., & Pasa, V. M. D. (2018). Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel, 223(March), 149–156. https://doi.org/10.1016/j.fuel.2018.03.020
  40. Sowe, M. S., Lestari, A. R., Novitasari, E., Masruri, M., & Ulfa, S. M. (2022). The Production of Green Diesel Rich Pentadecane (C15) from Catalytic Hydrodeoxygenation of Waste Cooking Oil using Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2. Bulletin of Chemical Reaction Engineering and Catalysis, 17(1), 135–145. https://doi.org/10.9767/BCREC.17.1.12700.135-145
  41. Zhong, J., Deng, Q., Cai, T., Li, X., Gao, R., Wang, J., Zeng, Z., Dai, G., & Deng, S. (2021). Graphitic carbon embedded FeNi nanoparticles for efficient deoxygenation of stearic acid without using hydrogen and solvent. Fuel, 292(February), 120248. https://doi.org/10.1016/j.fuel.2021.120248
  42. Zhou, Y., Remón, J., Jiang, Z., Matharu, A. S., & Hu, C. (2023). Tuning the selectivity of natural oils and fatty acids/esters deoxygenation to biofuels and fatty alcohols: A review. Green Energy and Environment, 8(3), 722–743. https://doi.org/10.1016/j.gee.2022.03.001

Last update:

No citation recorded.

Last update: 2025-10-21 21:46:10

No citation recorded.