skip to main content

View PDF Download fulltext

Enhancing solid fuel potential of water hyacinth: A study on chemical modification through composting and demineralization

1Study Program of Forest Product Science and Technology, Department of Forest Products, Faculty of Forestry and Environment, IPB University, Bogor, Indonesia

2Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Tangerang Selatan, Indonesia

3Research Center for Applied Zoology, National Research and Innovation Agency, Cibinong, Indonesia

4 Cryo-Electron Microscopy Facility, National Research and Innovation Agency, Cibinong, Indonesia

View all affiliations
Received: 12 Jun 2025; Revised: 29 Oct 2025; Accepted: 5 Dec 2025; Available online: 28 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Rapid growth makes water hyacinth (WH) an exceptional biomass resource, but its low calorific value and elevated ash content hinder its application as a sustainable green energy source. This study aims to enhance the quality of water hyacinth as a solid fuel by increasing lignin content through composting and decreasing ash content by demineralization. The composting period for water hyacinth was modified to 4, 7, 11, and 15 days, followed by a demineralization process employing two solvents: water and 5% nitric acid (HNO₃). Proximate, ultimate, and chemical studies were conducted on water hyacinth before and following treatment to ascertain its specific alterations. This study indicates that after 15 days of composting, the lignin fraction increased from 10.01% to 15.14%. Demineralization employing a combination of water and nitric acid can substantially reduce ash content (19.4%). The demineralization of raw materials during composting is more efficacious in diminishing ash content than the demineralization of raw materials before composting. The most significant reduction was 46.17%, observed in the 11-day WH composting, where the ash content decreased from 22% to 11.84%. According to the results, modified WH is a viable raw material for solid fuel due to its enhanced lignin content and reduced ash level.

Keywords: biomass energy; wood pellets; composting; demineralization

Article Metrics:

  1. Adamovics, A., Platace, R., Gulbe, I., and Ivanovs, S. (2018). The content of carbon and hydrogen in grass biomass and its influence on heating value. Engineering for Rural Development. https://doi.org/10.22616/ERDev2018.17.N014
  2. Agung A. (2016). Aktivitas Proses Dekomposisi Berbagai Bahan Organik Dengan Aktivator Alami dan Buatan, Jurnal Ilmu Pertanian 13 (2), 92-104
  3. Ahamer, G. (2022). Why Biomass Fuels Are Principally Not Carbon Neutral, Energies, 15(24). https://doi.org/10.3390/en15249619
  4. Ariyanto DP. (2006). Ikatan Antara Asam Organik Tanah dengan Logam, Karya Ilmiah Pasca Sarjana Ilmu Tanah. Yogyakarta: Universitas Gadjah Mada, 1–13
  5. Azis, F. A., Choo, M., Suhaimi, H., and Abas, P. E. (2023). The Effect of Initial Carbon to Nitrogen Ratio on Kitchen Waste Composting Maturity, Sustainability (Switzerland), 15(7). https://doi.org/10.3390/su15076191
  6. Barneto, A. G., Carmona, J. A., Gálvez, A., and Conesa, J. A. (2009). Effects of the composting and the heating rate on biomass gasification. Energy and Fuels, 23(2), 951–957. https://doi.org/10.1021/ef8005806
  7. Bernal, M. P., Alburquerque, J. A., and Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22). https://doi.org/10.1016/j.biortech.2008.11.027
  8. Bohacz, J. (2019). Changes in mineral forms of nitrogen and sulfur and enzymatic activities during composting of lignocellulosic waste and chicken feathers. Environmental Science and Pollution Research, 26(10). https://doi.org/10.1007/s11356-019-04453-2
  9. Chia, W. Y., Chew, K. W., Le, C. F., Chee, C. S. C., Ooi, M. S. L., and Show, P. L. (2022). Utilization of Aerobic Compression Composting Technology on Raw Mushroom Waste for Bioenergy Pellets Production. Processes, 10(3). https://doi.org/10.3390/pr10030463
  10. Darmawan, S. A. C., R., Sihombing, A. L., and Cendrawati, D. G. (2021). Potential and Characteristics of Eichhornia Crassipes Biomass and Municipal Solid Waste As Raw Materials for RDF in Co-Firing Coal Power Plants, IOP Conference Series: Earth and Environmental Science, 926(1). https://doi.org/10.1088/1755-1315/926/1/012009
  11. Díaz, M. J., Ruiz-Montoya, M., Palma, A., and de-Paz, M. V. (2021). Thermogravimetry applicability in compost and composting research: A review. Applied Sciences (Switzerland), 11(4). https://doi.org/10.3390/app11041692
  12. Duan, J., Huang, R. J., Gu, Y., Lin, C., Zhong, H., Xu, W., Liu, Q., You, Y., Ovadnevaite, J., Ceburnis, D., Hoffmann, T., and O’Dowd, C. (2022). Measurement report: Large contribution of biomass burning and aqueous-phase processes to the wintertime secondary organic aerosol formation in Xi’an, Northwest China. Atmospheric Chemistry and Physics, 22(15), 10139–10153. https://doi.org/10.5194/acp-22-10139-2022
  13. Esteves, B., Sen, U., and Pereira, H. (2023). Influence of Chemical Composition on Heating Value of Biomass: A Review and Bibliometric Analysis, Energies, 16(10), 1–17. https://doi.org/10.3390/en16104226
  14. Hemida, M. H., Moustafa, H., Mehanny, S., Morsy, M., Abd EL Rahman, E. N., and Ibrahim, M. M. (2024). Valorization of Eichhornia crassipes for the production of cellulose nanocrystals further investigation of plethoric biobased resource, Scientific Reports, 14(1), 12387. https://doi.org/10.1038/s41598-024-62159-z
  15. Huang, L., Xie, C., Liu, J., Zhang, X., Chang, K. L., Kuo, J., Sun, J., Xie, W., Zheng, L., Sun, S., Buyukada, M., and Evrendilek, F. (2018). “Influence of catalysts on co-combustion of sewage sludge and water hyacinth blends as determined by TG-MS analysis,” Bioresource Technology, Elsevier, 247(September 2017), 217–225. https://doi.org/10.1016/j.biortech.2017.09.039
  16. Hudakorn, T., and Sritrakul, N. (2020). Biogas and biomass pellet production from water hyacinth, Energy Reports, Elsevier Ltd, 6, 532–538. https://doi.org/10.1016/j.egyr.2019.11.115
  17. Ismayati, M., Nakagawa-Izumi, A., Kamaluddin, N. N., and Ohi, H. (2016). Toxicity and feeding deterrent effect of 2-methylanthraquinone from thewood extractives of Tectona grandis on the subterranean termites Coptotermes formosanus and Reticulitermes speratus. Insects, 7(4). https://doi.org/10.3390/insects7040063
  18. Jiang, L., Hu, S., Sun, L. shi, Su, S., Xu, K., He, L. mo, and Xiang, J. (2013). Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresource Technology, 146, 254–260. https://doi.org/10.1016/j.biortech.2013.07.063
  19. Kementerian, and ESDM. (2024). Hingga 2030, Permintaan Energi Dunia Meningkat 45 %, Kementerian ESDM RI, 1–3
  20. Kostryukov, S. G., Matyakubov, H. B., Masterova, Y. Y., Kozlov, A. S., Pryanichnikova, M. K., Pynenkov, A. A., and Khluchina, N. A. (2023). Determination of Lignin, Cellulose, and Hemicellulose in Plant Materials by FTIR Spectroscopy. Journal of Analytical Chemistry, 78(6), 718–727. https://doi.org/10.1134/S1061934823040093
  21. Krzywanski, J., Czakiert, T., Zylka, A., Nowak, W., Sosnowski, M., Grabowska, K., Skrobek, D., Sztekler, K., Kulakowska, A., Ashraf, W. M., and Gao, Y. (2022). Modelling of SO2 and NOx Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach, Energies, 15(21). https://doi.org/10.3390/en15218095
  22. Kukuruzović, J., Matin, A., Kontek, M., Krička, T., Matin, B., Brandić, I., and Antonović, A. (2023). The Effects of Demineralization on Reducing Ash Content in Corn and Soy Biomass with the Goal of Increasing Biofuel Quality, Energies, 16(2). https://doi.org/10.3390/en16020967
  23. Li, F., He, X., Srishti, A., Song, S., Tan, H. T. W., Sweeney, D. J., Ghosh, S., and Wang, C. H. (2021). Water hyacinth for energy and environmental applications: A review, Bioresource Technology. https://doi.org/10.1016/j.biortech.2021.124809
  24. Liang, D., Chen, Y., Zhu, S., Gao, Y., Sun, T., Ri, K., and Xie, X. (2021). Low-temperature conversion of Fe-rich sludge to KFeS2 whisker: a new flocculant synthesis from laboratory scale to pilot scale. Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00098-4
  25. Liao, R., Xu, J., and Umemura, K. (2016). Low Density Sugarcane Bagasse Particleboard Bonded with Citric Acid and Sucrose: Effect of board density and additive content, BioResources, 11(1). https://doi.org/10.15376/BIORES.11.1.2174-2185
  26. Liu, C., Qiu, T., Cao, W., Liu, H., Zhao, W., Mostafa, E., and Zhang, Y. (2024). Water-washing treatment can change biochar microstructure: microwave pyrolysis of biomass, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 46(1). https://doi.org/10.1080/15567036.2024.2302010
  27. Meng, J., Zhang, X., Ai, Y., Yue, H., Li, X., and Chen, R. (2021). Deslagging of Eichhornia crassipers and Pistia stratiotes biomass pellets, Energy Reports, 7. https://doi.org/10.1016/j.egyr.2021.01.010
  28. Mindari, W., Sassongko, P. E., and Syekhfani. (2022). Asam Humat.Edisi 3, UPN Jawa Timur, https://repository.upnjatim.ac.id/4125/1/Asam_humat_edisi%203.pdf
  29. Murda, R. A., Maulana, S., Fatrawana, A., Mangurai, S. U. N. M., Muhamad, S., Hidayat, W., and Bindar, Y. (2022). Changes in Chemical Composition of Betung Bamboo (Dendrocalamus asper) after Alkali Immersion Treatment under Various Immersion Times, Jurnal Sylva Lestari, 10(3), 358–371. https://doiorg/10.23960/jsl.v10i3.599
  30. Mustamu, S., and Pari, G. (2018). Kharateristik biopellet dari limbah padat kayu putih dan gondorukem, Jurnal Penelitian Hasil Hutan, 36(3), 191–204. https://doi.org/10.20886/jphh.2018.36.3.191-204
  31. Nawawi, D. S., Carolina, A., Saskia, T., Darmawan, D., Gusvina, S. L., Wistara, N. J., Sari, R. K., and Syafii, W. (2018). Chemical Characteristics of Biomass for Energy, J. Ilmu Teknol. Kayu Tropis, 16(1), 44–51
  32. Parikh, J., Channiwala, S. A., and Ghosal, G. K. (2005). A correlation for calculating HHV from proximate analysis of solid fuels, Fuel, 84(5), 487–494. https://doi.org/10.1016/j.fuel.2004.10.010
  33. Peraturan, P. M., Republik, P., Nomor, I., Presiden, P., and Indonesia, R. (2006). Perpres Nomar 5 Tahun2006 : Kebijakan Energi Nasional,1–5
  34. Putri, M. I. D. W., Murda, R. A., Maulana, S., Octaviani, E. A., Sari, N. A., Hasibuan, M. M., Aulia, F., and Hidayat, W. (2024). Hybrid Biopellets Characterization of Gamal Wood (Gliricidia sepium) and Robusta Coffee Husk at Various Compositions, Jurnal Sylva Lestari, 12(3), 595–609. https://doi.org/10.23960/jsl.v12i3.913
  35. Ratih, Y. W., Sohilait, D. A., and Widodo, R. A. (2018). Uji aktivitas dekomposisi dari beberapa inokulum komersial pada berbagai jenis bahan berdasarkan jumlah CO2 yang terbentuk. Jurnal Tanah dan Air, 15(2), 93–102. https://doi.org/10.31315/jta.v15i2.4004
  36. Saputra, N. A., Darmawan, S., Efiyanti, L., Hendra, D., Wibowo, S., Santoso, A., Djarwanto, Gusmailina, Komarayati, S., Indrawan, D. A., Yuniawati, Nawawi, D. S., Maddu, A., Pari, G., and Syafii, W. (2022). A Novel Mesoporous Activated Carbon Derived from Calliandra calothyrsus via Physical Activation: Saturation and Superheated. Energies, 15(18). https://doi.org/10.3390/en15186675
  37. Sarkar, D. K. (2015). .Chapter 3 - Fuels and Combustion. D. K. B. T.-T. P. P. Sarkar, ed., Elsevier, 91–137. DOI: https://doi.org/10.1016/B978-0-12-801575-9.00003-2
  38. Singhal, A., Goossens, M., Konttinen, J., and Joronen, T. (2021). Effect of basic washing parameters on the chemical composition of empty fruit bunches during washing pretreatment: A detailed experimental, pilot, and kinetic study, Bioresource Technology, 340. https://doi.org/10.1016/j.biortech.2021.125734
  39. Solihat, N. N., Sari, F. P., Risanto, L., Anita, S. H., Fitria, Fatriasari, W., and Hermiati, E. (2017). Disruption of oil palm empty fruit bunches by microwave-assisted oxalic acid pretreatment, Journal of Mathematical and Fundamental Sciences, 49(3). https://doi.org/10.5614/j.math.fund.sci.2017.49.3.3
  40. Sommersacher, P., Kienzl, N., Brunner, T., and Obernberger, I. (2015). Simultaneous Online Determination of S, Cl, K, Na, Zn, and Pb Release from a Single Particle during Biomass Combustion. Part 1: Experimental Setup-Implementation and Evaluation. Energy and Fuels, 29(10). https://doi.org/10.1021/acs.energyfuels.5b00621
  41. Tuomela, M., Vikman, M., Hatakka, A., and Itävaara, M. (2000). Biodegradation of lignin in a compost environment: A review, Bioresource Technology, 72(2). https://doi.org/10.1016/S0960-8524(99)00104-2
  42. Usino, D. O., Sar, T., Ylitervo, P., and Richards, T. (2023). Effect of Acid Pretreatment on the Primary Products of Biomass Fast Pyrolysis, Energies, 16(5). https://doi.org/10.3390/en16052377
  43. Vassilev, S. V., Baxter, D., Andersen, L. K., and Vassileva, C. G. (2013). An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel, Elsevier Ltd, 105, 40–76. https://doi.org/10.1016/j.fuel.2012.09.041
  44. Velázquez-Araque, L., Muñoz Cajiao, C., Solis-Cordero, E., and Vásquez-Inca, G. (2020). Eichhornia crassipes: A new energy source for biopellets production. European Biomass Conference and Exhibition Proceedings, (September), 377–383. https://doi.org/10.5071/28thEUBCE2020-2BV.2.43
  45. Wang, S., Zou, C., Yang, H., Lou, C., Cheng, S., Peng, C., Wang, C., and Zou, H. (2021). Effects of cellulose, hemicellulose, and lignin on the combustion behaviours of biomass under various oxygen concentrations. Bioresource Technology, 320. https://doi.org/10.1016/j.biortech.2020.124375
  46. Wichianphong N and Maison W. (2020). Preparation of biofuel pellets from water hyacinth and waste coffee grounds. RMUTSB Acad. J., 8(2), 140–152. https://li01.tci-thaijo.org/index.php/rmutsb-sci/article/view/247484
  47. Wistara, N. J., Bahri, S., and Pari, G. (2020). Biopellet properties of agathis wood fortified with its peeled-off bark, IOP Conference Series: Materials Science and Engineering, 935(1). https://doi.org/10.1088/1757-899X/935/1/012047
  48. Wu, D., Wei, Z., Mohamed, T. A., Zheng, G., Qu, F., Wang, F., Zhao, Y., and Song, C. (2022). Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere, 286. https://doi.org/10.1016/j.chemosphere.2021.131635
  49. Yang, H., Zhang, H., Qiu, H., Anning, D. K., Li, M., Wang, Y., and Zhang, C. (2021). Effects of C/N ratio on lignocellulose degradation and enzyme activities in aerobic composting, Horticulturae, 7(11), 1–13. https://doi.org/10.3390/horticulturae7110482
  50. Zhang, C., Ma, X., Zheng, C., Huang, T., Lu, X., and Tian, Y. (2020). Co-hydrothermal Carbonization of Water Hyacinth and Sewage Sludge: Effects of Aqueous Phase Recirculation on the Characteristics of Hydrochar. Energy and Fuels, 34(11), 14147–14158. https://doi.org/10.1021/acs.energyfuels.0c01991
  51. Zikri, A., Meigita, C., and Samosir, J. A. (2018). Characteristics of Biopellet from Variation of Raw Materials as Alternative Fuel, Jurnal Kinetika, 9(01), 26–32
  52. Zouari, M., Marrot, L., and DeVallance, D. B. (2024). Effect of demineralization and ball milling treatments on the properties of Arundo donax and olive stone-derived biochar. International Journal of Environmental Science and Technology, Springer Berlin Heidelberg, 21(1), 101–114. https://doi.org/ 10.1007/s13762-023-04968-9

Last update:

No citation recorded.

Last update: 2026-01-13 05:32:23

No citation recorded.