skip to main content

View PDF Download fulltext

Orchestrating green ports: An integrated BWM–Fuzzy DEMATEL–ANP–TOPSIS framework for techno-economic prioritization

1Faculty of Business Administration, HUTECH University, Ho Chi Minh City, Viet Nam

2Hanoi Amsterdam High School for the Gifted, Hanoi, Viet Nam

3School of Mechanical Engineering, Hanoi University of Science and Technology, Hanoi, Viet Nam

4 Faculty of International Maritime Studies, Kasetsart University, Thailand

5 Faculty of Economics – Management, Dong Nai Technology University, Dong Nai, Viet Nam

6 Logistics Center, Ho Chi Minh city University of Transport, Ho Chi Minh city, Viet Nam

View all affiliations
Received: 15 Oct 2025; Revised: 18 Nov 2025; Accepted: 25 Nov 2025; Available online: 1 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study introduces a comprehensive multi-criteria decision-making framework that integrates the Best–Worst Method (BWM), fuzzy DEMATEL, the Analytic Network Process (ANP), and TOPSIS to prioritize green port electrification and operational enhancements. The model reflects complex trade-offs that shape decarbonization plans by asking experts about 20 important techno-economic, environmental, and organizational factors. The most important results show that emission abatement, fuel savings, and pollution reduction had the highest BWM weights. This shows that environmental goals are the most important. Fuzzy DEMATEL research showed that lifecycle replacement risk and labor preparedness were the main factors that affected tariff exposure, operational dependability, and digital integration results. ANP adjusted the weights of the criteria to take into consideration interdependencies, making economic risk and human capital the most important factors in decision-making. The TOPSIS rating found that a hybrid phased deployment option was the best choice for meeting goals for cost, emissions reduction, and operational readiness. It did better than both electric and traditional methods. These results show that the framework may combine expert knowledge, causal structure, and network feedback to make green port techniques more important. The concept goes beyond linear weighing by using cause-and-effect maps and feedback loops. This gives decision-makers a better understanding and more confidence when it comes to allocating resources. The results encourage a balanced growth of capital investments, environmental protection, and the ability of the workforce. This flexible strategy is helpful in  gradually combining the renewables, tariff dynamics, and operational data to create strong, low-carbon marine logistics centers.
Keywords: Green port; Techno-economic analysis; Low-carbon marine logistics; Decarbonization plan; Multi-criteria decision-making framework; TOPSIS

Article Metrics:

  1. Agarwala, Ni. (2021). Managing Marine Environmental Pollution using Artificial Intelligence. Maritime Technology and Research, 3(2), https://doi.org/10.33175/mtr.2021.248053
  2. Akyuz, E., & Celik, E. (2015). A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil tankers. Journal of Loss Prevention in the Process Industries, 38, 243–253. https://doi.org/10.1016/J.JLP.2015.10.006
  3. Alamoush, A. S., & Ölçer, A. I. (2025). Harnessing cutting-edge technologies for sustainable future shipping: An overview of innovations, drivers, barriers, and opportunities. Maritime Technology and Research, 7(4), 277313. https://doi.org/10.33175/mtr.2025.277313
  4. Alghassab, M. (2022). Quantitative assessment of sustainable renewable energy through soft computing: Fuzzy AHP-TOPSIS method. Energy Reports, 8, 12139–12152. https://doi.org/10.1016/j.egyr.2022.09.049
  5. Brans, J.-P., & De Smet, Y. (2016). PROMETHEE Methods (pp. 187–219). https://doi.org/10.1007/978-1-4939-3094-4_6
  6. Büyüközkan, G., & Ifi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39(3), 3000–3011. https://doi.org/10.1016/J.ESWA.2011.08.162
  7. Chakraborty, S. (2022). TOPSIS and Modified TOPSIS: A comparative analysis. Decision Analytics Journal, 2, 100021. https://doi.org/10.1016/j.dajour.2021.100021
  8. Chen, Y., Jin, Q., Fang, H., Lei, H., Hu, J., Wu, Y., Chen, J., Wang, C., & Wan, Y. (2019). Analytic network process: Academic insights and perspectives analysis. Journal of Cleaner Production, 235, 1276–1294. https://doi.org/10.1016/j.jclepro.2019.07.016
  9. Dinçer, H., Yüksel, S., & Martínez, L. (2019). Interval type 2-based hybrid fuzzy evaluation of financial services in E7 economies with DEMATEL-ANP and MOORA methods. Applied Soft Computing, 79, 186–202. https://doi.org/10.1016/j.asoc.2019.03.018
  10. Duc, N. M., & Nguyen, L. H. (2025). Ranking barriers to green port development: A neutrosophic-fuzzy ISM approach. Maritime Technology and Research, 8(1), 281958. https://doi.org/10.33175/mtr.2026.281958
  11. Emovon, I., & Oghenenyerovwho, O. S. (2020). Application of MCDM method in material selection for optimal design: A review. Results in Materials, 7, 100115. https://doi.org/10.1016/j.rinma.2020.100115
  12. Garg, C. P., Kashav, V., & Wang, X. (2023). Evaluating sustainability factors of green ports in China under fuzzy environment. Environment, Development and Sustainability, 25(8), 7795–7821. https://doi.org/10.1007/s10668-022-02375-7
  13. Gazi, K. H., Momena, A. F., Salahshour, S., Mondal, S. P., & Ghosh, A. (2024). Synergistic Strategy of Sustainable Hospital Site Selection in Saudi Arabia Using Spherical Fuzzy MCDM Methodology. 17(3). https://doi.org/10.1142/S1752890924500041
  14. Gonzalez Aregall, M., Bergqvist, R., & Monios, J. (2018). A global review of the hinterland dimension of green port strategies. Transportation Research Part D: Transport and Environment, 59, 23–34. https://doi.org/10.1016/j.trd.2017.12.013
  15. Govindan, K., & Jepsen, M. B. (2016). ELECTRE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 250(1), 1–29. https://doi.org/10.1016/j.ejor.2015.07.019
  16. Gündoǧdu, F. K., & Kahraman, C. (2018). Spherical fuzzy sets and spherical fuzzy TOPSIS method. Journal of Intelligent & Fuzzy Systems, 36(1), 337–352. https://doi.org/10.3233/JIFS-181401
  17. Hoang, A. T., Bui, T. A. E., Nguyen, X. P., Bui, V. H., Nguyen, Q. C., Truong, T. H., & Chung, N. (2025). Explainable machine learning-based prediction of fuel consumption in ship main engines using operational data. Brodogradnja, 76(4), 1–24. https://doi.org/10.21278/brod76405
  18. Hoang, A. T., Foley, A. M., Nižetić, S., Huang, Z., Ong, H. C., Ölçer, A. I., Pham, V. V., & Nguyen, X. P. (2022). Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. Journal of Cleaner Production, 355, 131772. https://doi.org/10.1016/j.jclepro.2022.131772
  19. Hoang, A. T., Pandey, A., Martinez De Osés, F. J., Chen, W.-H., Said, Z., Ng, K. H., Ağbulut, Ü., Tarełko, W., Ölçer, A. I., & Nguyen, X. P. (2023). Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 188, 113790. https://doi.org/10.1016/j.rser.2023.113790
  20. Hua, C., Chen, J., Wan, Z., Xu, L., Bai, Y., Zheng, T., & Fei, Y. (2020). Evaluation and governance of green development practice of port: A sea port case of China. Journal of Cleaner Production, 249, 119434. https://doi.org/10.1016/j.jclepro.2019.119434
  21. Huynh, V. C., & Tran, G. T. (2020). Improving the accuracy of ship resistance prediction using computational fluid dynamics tool. International Journal on Advanced Science, Engineering and Information Technology, 10(1), 171–177. https://doi.org/10.18517/ijaseit.10.1.10588
  22. IMO. (2020). Fourth IMO Greenhouse Gas Study 2020-final report. Mepc 75/7/15, 74
  23. IMO. (2021). Fourth IMO GHG Study 2020 Full Report. International Maritime Organisation, 6(11), 524
  24. IMO. (2023). 2023 IMO STRATEGY ON REDUCTION OF GHG EMISSIONS FROM SHIPS, ANNEX 1
  25. Ismail, A. M., Ballini, F., Ölçer, A. I., & Alamoush, A. S. (2024). Integrating ports into green shipping corridors: Drivers, challenges, and pathways to implementation. Marine Pollution Bulletin, 209, 117201. https://doi.org/10.1016/j.marpolbul.2024.117201
  26. Kar, S., & Jha, K. N. (2022). Assessing criticality of construction materials for prioritizing their procurement using ANP-TOPSIS. International Journal of Construction Management, 22(10), 1852–1862. https://doi.org/10.1080/15623599.2020.1742637
  27. Khatun, M., Wagner, F., Jung, R., & Glaß, M. (2023). An application of DEMATEL and fuzzy DEMATEL to evaluate the interaction of safety management system and cybersecurity management system in automated vehicles. Engineering Applications of Artificial Intelligence, 124, 106566. https://doi.org/10.1016/j.engappai.2023.106566
  28. Kheybari, S., Rezaie, F. M., & Farazmand, H. (2020). Analytic network process: An overview of applications. Applied Mathematics and Computation, 367, 124780. https://doi.org/10.1016/J.AMC.2019.124780
  29. Kołodziej, R., & Hoffmann, P. (2024). Determination of Propeller-Rudder-Hull Interaction Coefficients in Ship Manoeuvring Prediction. Polish Maritime Research, 31(3), 15–24. https://doi.org/10.2478/pomr-2024-0032
  30. Lam, J. S. L., & Notteboom, T. (2014). The Greening of Ports: A Comparison of Port Management Tools Used by Leading Ports in Asia and Europe. Transport Reviews, 34(2), 169–189. https://doi.org/10.1080/01441647.2014.891162
  31. Le, T. T., Nguyen, H. P., Rudzki, K., Rowiński, L., Bui, V. D., Truong, T. H., Le, H. C., & Pham, N. D. K. (2023). Management strategy for seaports aspiring to green logistical goals of IMO: Technology and policy solutions. Polish Maritime Research, 30(2), 165–187. https://doi.org/10.2478/pomr-2023-0031
  32. Lin, C. Y., Dai, G. L., Wang, S., & Fu, X. M. (2022). The Evolution of Green Port Research: A Knowledge Mapping Analysis. Sustainability 2022, Vol. 14, Page 11857, 14(19), 11857. https://doi.org/10.3390/SU141911857
  33. Mansoursamaei, M., Moradi, M., González-Ramírez, R. G., & Lalla-Ruiz, E. (2023). Machine Learning for Promoting Environmental Sustainability in Ports. Journal of Advanced Transportation, 2023, 1–17. https://doi.org/10.1155/2023/2144733
  34. Narwane, V. S., Yadav, V. S., Raut, R. D., Narkhede, B. E., & Gardas, B. B. (2021). Sustainable development challenges of the biofuel industry in India based on integrated MCDM approach. Renewable Energy, 164, 298–309. https://doi.org/10.1016/J.RENENE.2020.09.077
  35. Nguyen, H. P., Hoang, A. T., Nizetic, S., Nguyen, X. P., Le, A. T., Luong, C. N., Chu, V. D., & Pham, V. V. (2021). The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review. International Transactions on Electrical Energy Systems, 31(11), e12580. https://doi.org/10.1002/2050-7038.12580
  36. Nguyen, H. P., Nguyen, P. Q. P., & Nguyen, T. P. (2022). Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A Case study in Vietnam. International Journal of Renewable Energy Development, 11(4), 950–962. https://doi.org/10.14710/ijred.2022.46539
  37. Nguyen, H. P., Pham, N. D. K., & Bui, V. D. (2022). Technical-Environmental Assessment of Energy Management Systems in Smart Ports. International Journal of Renewable Energy Development, 11(4), 889–901. https://doi.org/10.14710/ijred.2022.46300
  38. Nguyen, M. D., Yeon, K. T., Rudzki, K., Nguyen, H. P., & Pham, N. D. K. (2023). Strategies for developing logistics centers: Technological trends and policy implications. Polish Maritime Research, 30(4), 129–147. https://doi.org/10.2478/pomr-2023-0066
  39. Nguyen, P. Q. P., Nguyen, D. T., Yen, N. H. T., Le, Q., Nguyen, N. T., & Khoa Pham, N. D. (2025). Machine Learning-Driven Insights for Optimizing Ship Fuel Consumption: Predictive Modeling and Operational Efficiency. International Journal on Advanced Science, Engineering and Information Technology, 15(1), 27–35. https://doi.org/10.18517/ijaseit.15.1.12374
  40. Perwira Mulia Tarigan, A., Hasan, M. M., Khairi Abd Wahab, M., Dogheche, E., & Djamaludin, A. (2021). Renewable energy source selection for a green port with AHP. IOP Conference Series: Earth and Environmental Science, 753(1), 012001. https://doi.org/10.1088/1755-1315/753/1/012001
  41. Pham, N. D. K., Dinh, G. H., Pham, H. T., Kozak, J., & Nguyen, H. P. (2023). Role of Green Logistics in the Construction of Sustainable Supply Chains. Polish Maritime Research, 30(3), 191–211. https://doi.org/10.2478/pomr-2023-0052
  42. Pham, T. N., Nguyen, H. P., Nguyen, V. N., Sirichokpokin, P., Hadiyanto, H., Rudzki, K., Nguyen, C. T. U., & Bui, V. D. (2025). Application of hybrid fuzzy-TOPSIS approach in enhancing green logistics towards sustainable maritime. Polish Maritime Research, 32(2), 156–174. https://doi.org/10.2478/pomr-2025-0030
  43. Rani, P., Mishra, A. R., Mardani, A., Cavallaro, F., Štreimikienė, D., & Khan, S. A. R. (2020). Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection. Sustainability, 12(10), 4278. https://doi.org/10.3390/su12104278
  44. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/J.OMEGA.2014.11.009
  45. Satta, G., Vitellaro, F., Njikatoufon, A. G., & Risitano, M. (2025). Green strategies in ports: a stakeholder management perspective. Maritime Economics & Logistics, 27(1), 96–122. https://doi.org/10.1057/s41278-024-00294-0
  46. Shahrul Alfian, H. A., Zakaria, A., & Md. Arof, A. (2025). Green Port Performance Indicators for Dry Bulk Terminal: A Case Study of Port Klang. Journal of Ship and Marine Structures, 8(1), 19–28. https://doi.org/10.37934/jsms.8.1.1928
  47. Tang, J., Liu, X., & Wang, W. (2025). An Integrated Interval Type-2 Fuzzy PROMETHEE-II Decision Model for the Selection of Medical Waste Treatment Techniques. International Journal of Information Technology & Decision Making, 24(04), 1035–1065. https://doi.org/10.1142/S0219622023500554
  48. Taş, M. A., & Çakır, E. (2024). Performance Evaluation of Green Ports via C-IFS AHP: A Case Study in Turkey (pp. 331–339). https://doi.org/10.1007/978-3-031-50208-8_21
  49. Wang, T., Cheng, P., & Zhen, L. (2023). Green development of the maritime industry: Overview, perspectives, and future research opportunities. Transportation Research Part E: Logistics and Transportation Review, 179, 103322. https://doi.org/10.1016/J.TRE.2023.103322
  50. Zhang, Z., Song, C., Zhang, J., Chen, Z., Liu, M., Aziz, F., Kurniawan, T. A., & Yap, P.-S. (2024). Digitalization and innovation in green ports: A review of current issues, contributions and the way forward in promoting sustainable ports and maritime logistics. Science of The Total Environment, 912, 169075. https://doi.org/10.1016/j.scitotenv.2023.169075

Last update:

No citation recorded.

Last update: 2026-01-12 17:34:15

No citation recorded.