skip to main content

View PDF Download fulltext

Evaluating the performance of stainless steel in microbial electrolysis cells: Hydrogen production and corrosion behaviour

1Institute of Sustainable Energy & Resources, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Malaysia

2Fuel Cell Institute, The National University of Malaysia, 43600 UKM Bangi, Malaysia

3Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, The National University of Malaysia, 43600 UKM Bangi, Malaysia

4 Korea Institute of Science and Technology, Seoul 136-791, South Korea

5 State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China

6 Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, The National University of Malaysia, 43600 UKM Bangi, Malaysia

7 Food Technology Development, Faculty of Industrial Technology Universitas Ahmad Dahlan Bantul 55191 Yogyakarta, Indonesia

8 College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, P.R, China

View all affiliations
Received: 1 Jul 2025; Revised: 16 Nov 2025; Accepted: 26 Dec 2025; Available online: 11 Jan 2025; Published: 1 Mar 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Microbial Electrolysis Cells (MECs) provide a sustainable route to hydrogen production via microbial electron transfer, while the biocathode enhances affordability and functionality. Stainless steel (SS) is an ideal material for bioelectrochemical systems (BES) due to its high recyclability and corrosion resistance. The chromium content forms a protective, corrosion-resistant layer that promotes beneficial microbial interactions and enhances durability. However, the MEC requires an oxygen-free cathode, which is incompatible with the layer. This study evaluated the corrosion resistance of SS to microbial interactions, also known as microbial-influenced corrosion (MIC).  The results from SS are compared with those from carbon steel (CS) and graphite felt (GF), which are standard laboratory electrode materials used as controls. The performance of these biocathodes was assessed in both open-circuit (Co-MEC) and closed-circuit (Cc-MEC) conditions over a 120-day operational period, with a focus on hydrogen production and corrosion resistance against MIC. SS biocathodes exhibited the highest hydrogen production rate (2.33 ± 0.34 LH₂/m². day), outperforming CS by 54% and GF by 1.3%. Additionally, the SS system demonstrated superior chemical oxygen demand (COD) removal efficiency, achieving 45% COD removal, comparable to the GF (44%), whereas CS achieved 38%. The corrosion analysis revealed that the corrosion rate (RM) of CS (0.08 ± 0.08 mm/year) was 86% higher than that of SS and GF (0.03 ± 0.03 mm/year) under Cc-MEC mode. Microbial community analysis revealed a higher abundance of Desulfovibrio, a genus within the sulphate-reducing bacteria (SRB) group, in Co-MEC systems, which contributes to increased corrosion. In contrast, the Cc-MEC system showed an increase in electrochemically active bacteria (EAB), including Pseudomonas, which are known to promote hydrogen evolution and inhibit SRB. This study highlights the need for further research into corrosion-resistant materials and the optimisation of microbial communities.

Keywords: Stainless steel; MEC biocathode; Microbiologically-influenced corrosion; Pitting; SRB; Fuel Cell; Application; SDG 7
Funding: Ministry of Higher Education Malaysia under contract HICOE-2023-003; Fundamental Research Grant Scheme under contract FRGS/1/2014/TK06/UKM/03/1; Research University Grant Scheme under contract GUP-2015-036

Article Metrics:

  1. Abu Bakar, M. H., Shamsuddin, R. A., Yunus, R. M., Wan Daud, W. R., Md. Jahim, J., & Aqma, W. S. (2018). Stainless steel application as metal electrode in bioelectrochemical system. Jurnal Kejuruteraan, SI1(1), 65–75. https://doi.org/10.17576/jkukm-2018-si1(1)-09
  2. Akpoborie, J., Fayomi, O. S. I., Agboola, O., Samuel, O. D., Oreko, B. U., & Ayoola, A. A. (2021). Electrochemical corrosion phenomenon and prospect of materials selection in curtailing the challenges. IOP Conference Series: Materials Science and Engineering, 1107(1), 012072. https://doi.org/10.1088/1757-899x/1107/1/012072
  3. Beese-Vasbender, P. F., Nayak, S., Erbe, A., Stratmann, M., & Mayrhofer, K. J. J. (2015). Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochimica Acta, 167, 321–329. https://doi.org/10.1016/j.electacta.2015.03.184
  4. Bora, A., Mohanrasu, K., Angelin Swetha, T., Ananthi, V., Sindhu, R., Chi, N. T. L., Pugazhendhi, A., Arun, A., & Mathimani, T. (2022). Microbial electrolysis cell (MEC): Reactor configurations, recent advances and strategies in biohydrogen production. Fuel, 328(June), 125269. https://doi.org/10.1016/j.fuel.2022.125269
  5. Bunsen, H. (2010). 8 - Winemaking equipment maintenance and troubleshooting. In C. E. Butzke (Ed.), Winemaking Problems Solved (pp. 199–256). Woodhead Publishing. https://doi.org/10.1533/9781845690188.199
  6. Cabrera, S. E., & Agudelo-Escobar, L. M. (2023). Determination of Electrogenic potential and removal of organic matter from industrial coffee wastewater using a native community in a non-conventional microbial fuel cell. Processes, 11(2), 373. https://doi.org/10.3390/pr11020373
  7. Call, D. F., Merrill, M. D., & Logan, B. E. (2009). High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science and Technology, 43(6), 2179–2183. https://doi.org/10.1021/es803074x
  8. Chen, G. W., Choi, S. J., Cha, J. H., Lee, T. H., & Kim, C. W. (2010). Microbial community dynamics and electron transfer of a biocathode in microbial fuel cells. Korean Journal of Chemical Engineering, 27(5), 1513–1520. https://doi.org/10.1007/s11814-010-0231-6
  9. Chen, J., Wu, J., Wang, P., Zhang, D., Chen, S., & Tan, F. (2019). Corrosion of 907 steel influenced by sulfate-reducing bacteria. Journal of Materials Engineering and Performance, 28(3), 1469–1479. https://doi.org/10.1007/s11665-019-03927-1
  10. Choi, O., & Sang, B. I. (2016). Extracellular electron transfer from cathode to microbes: Application for biofuel production. Biotechnology for Biofuels, 9(1), 1-14. https://doi.org/10.1186/s13068-016-0426-0
  11. Cho, S. J., Kim, M. H., & Lee, Y. O. (2016). Effect of pH on soil bacterial diversity. Journal of Ecology and Environment, 40(1), 1-9. https://doi.org/10.1186/s41610-016-0004-1
  12. Chugh, B., Sheetal, Singh, M., Thakur, S., Pani, B., Singh, A. K., & Saji, V. S. (2022). Extracellular electron transfer by Pseudomonas aeruginosa in biocorrosion: A Review. ACS Biomaterials Science & Engineering, 8(3), 1049–1059. https://doi.org/10.1021/acsbiomaterials.1c01645
  13. Coetser, S. E., & Cloete, T. E. (2005). Biofouling and biocorrosion in industrial water systems. Critical Reviews in Microbiology, 31(4), 213–232. https://doi.org/10.1080/10408410500304074
  14. Croese, E., Pereira, M. A., Euverink, G. J. W., Stams, A. J. M., & Geelhoed, J. S. (2011). Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell. Applied Microbiology and Biotechnology, 92(5), 1083–1093. https://doi.org/10.1007/s00253-011-3583-x
  15. Dutt, N. (2022). Editorial Welcome to International Journal of Energy Resources Applications: A Journal Focussing on the Energy Demand and Applications. 1–4. https://doi.org/10.56896/ijera.2022.1.1.001
  16. Dykstra, C. M., & Pavlostathis, S. G. (2017). Methanogenic biocathode microbial community development and the role of bacteria. Environmental Science and Technology, 51(9), 5306–5316. https://doi.org/10.1021/acs.est.6b04112
  17. Eggerichs, T., Opel, O., Otte, T., & Rück, W. (2014). Interdependencies between biotic and abiotic ferrous iron oxidation and influence of pH, oxygen and ferric iron deposits. In Geomicrobiology Journal, 461-472. https://doi.org/10.1080/01490451.2013.870620
  18. Ewing, T., Ha, P. T., & Beyenal, H. (2017). Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources. Applied Energy, 192, 490–497. https://doi.org/10.1016/j.apenergy.2016.08.177
  19. Eyiuche, N. J., Asakawa, S., Yamashita, T., Ikeguchi, A., Kitamura, Y., & Yokoyama, H. (2017). Community analysis of biofilms on flame-oxidized stainless steel anodes in microbial fuel cells fed with different substrates. BMC Microbiology, 17(1), 1-8. https://doi.org/10.1186/s12866-017-1053-z
  20. Fan, L., Sun, Y., Wang, D., Zhang, Y., Zhang, M., Zhou, E., Xu, D., & Wang, F. (2023). Microbiologically influenced corrosion of a novel pipeline steel containing Cu and Cr elements in the presence of Desulfovibrio vulgaris Hildenborough. Corrosion Science, 223, 111421. https://doi.org/10.1016/j.corsci.2023.111421
  21. Gao, Q., Lu, Y., Wang, Y., Wu, Y., Zhang, C., & Wang, Y. (2024). Electrochemical study on the corrosion behavior of 316L stainless steel in quaternary nitrate molten salt nanofluids for thermal energy storage applications. Journal of Energy Storage, 83, 1-10. https://doi.org/10.1016/j.est.2024.110491
  22. Ghasemi, B., Yaghmaei, S., Abdi, K., Mardanpour, M. M., & Haddadi, S. A. (2020). Introducing an affordable catalyst for biohydrogen production in microbial electrolysis cells. Journal of Bioscience and Bioengineering, 129(1), 67–76. https://doi.org/10.1016/j.jbiosc.2019.07.001
  23. Guan, F., Zhai, X., Duan, J., Zhang, M., & Hou, B. (2016). Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel eq70 under cathodic polarization. PLoS ONE, 11(9), 1-22. https://doi.org/10.1371/journal.pone.0162315
  24. Guerrero-Sodric, O., Baeza, J. A., & Guisasola, A. (2024). Enhancing bioelectrochemical hydrogen production from industrial wastewater using Ni-foam cathodes in a microbial electrolysis cell pilot plant. Water Research, 256, 1-10. https://doi.org/10.1016/j.watres.2024.121616
  25. Hemdan, B. A., El-Taweel, G. E., Naha, S., & Goswami, P. (2023). Bacterial community structure of electrogenic biofilm developed on modified graphite anode in microbial fuel cell. Scientific Reports, 13(1), 1-14. https://doi.org/10.1038/s41598-023-27795-x
  26. Huang, Y. X., Liu, X. W., Sun, X. F., Sheng, G. P., Zhang, Y. Y., Yan, G. M., Wang, S. G., Xu, A. W., & Yu, H. Q. (2011). A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 36(4), 2773–2776. https://doi.org/10.1016/j.ijhydene.2010.11.114
  27. Illés, B., Hurtony, T., & Medgyes, B. (2015). Effect of current load on corrosion induced tin whisker growth from SnAgCu solder alloys. Corrosion Science, 99, 313–319. https://doi.org/10.1016/j.corsci.2015.07.026
  28. Jadhav, D. A., Pandit, S., Sonawane, J. M., Gupta, P. K., Prasad, R., & Chendake, A. D. (2021). Effect of membrane biofouling on the performance of microbial electrochemical cells and mitigation strategies. In Bioresource Technology Reports (Vol. 15), 1-15. https://doi.org/10.1016/j.biteb.2021.100822
  29. Jia, R., Unsal, T., Xu, D., Lekbach, Y., & Gu, T. (2019). Microbiologically influenced corrosion and current mitigation strategies: A state of the art review. International Biodeterioration & Biodegradation, 137, 42–58. https://doi.org/10.1016/j.ibiod.2018.11.007
  30. Jin, H. M., & Jeon, C. O. (2015). Litoribaculum gwangyangense gen. Nov., sp. nov., isolated from a sea-tidal flat sediment. International Journal of Systematic and Evolutionary Microbiology, 65(2), 381–387. https://doi.org/10.1099/ijs.0.068684-0
  31. Kato, S. (2016). Microbial extracellular electron transfer and its relevance to iron corrosion. In Microbial Biotechnology (Vol. 9, Issue 2, pp. 141–148). John Wiley and Sons Ltd. https://doi.org/10.1111/1751-7915.12340
  32. Khan, M. S., Kakar, F. K., Khan, S., & Athar, S. O. (2018). Efficiency and cost analysis of power sources in impressed current cathodic protection system for corrosion prevention in buried pipelines of Balochistan, Pakistan. IOP Conference Series: Materials Science and Engineering, 414(1), 1-11. https://doi.org/10.1088/1757-899X/414/1/012034
  33. Kim, B. H., Lim, S. S., Daud, W. R. W., Gadd, G. M., & Chang, I. S. (2015). The biocathode of microbial electrochemical systems and microbially-influenced corrosion. Bioresource Technology, 190, 395–401. https://doi.org/10.1016/j.biortech.2015.04.084
  34. Kim, K. Y., & Logan, B. E. (2019). Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 44(26), 13169–13174. https://doi.org/10.1016/j.ijhydene.2019.04.041
  35. Kundu, A., Sahu, J. N., Redzwan, G., & Hashim, M. A. (2013). An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. In International Journal of Hydrogen Energy (Vol. 38, Issue 4, pp. 1745–1757). https://doi.org/10.1016/j.ijhydene.2012.11.031
  36. Li, H., Xu, D., Li, Y., Feng, H., Liu, Z., Li, X., Gu, T., & Yang, K. (2015). Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 Carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PLoS ONE, 10(8), 1-12. https://doi.org/10.1371/journal.pone.0136183
  37. Lim, S. S., Kim, B. H., Da Li, Feng, Y., Wan Daud, W. R., Scott, K., & Yu, E. H. (2018). Effects of applied potential and reactants to hydrogen-producing biocathode in a microbial electrolysis cell. Frontiers in Chemistry, 6(AUG), 1-19. https://doi.org/10.3389/fchem.2018.00318
  38. Liu, D., Roca-Puigros, M., Geppert, F., Caizán-Juanarena, L., Na Ayudthaya, S. P., Buisman, C., & Heijne, A. (2018). Granular carbon-based electrodes as cathodes in methane-producing bioelectrochemical systems. Frontiers in Bioengineering and Biotechnology, 9(JUN), 1-10. https://doi.org/10.3389/fbioe.2018.00078
  39. Liu, D., Zheng, T., Buisman, C., & Heijne, A. (2017). Heat-Treated Stainless Steel Felt as a New Cathode Material in a Methane-Producing Bioelectrochemical System. ACS Sustainable Chemistry & Engineering, 5, 1-8. https://doi.org/10.1021/acssuschemeng.7b02367
  40. Li, X., Duan, J., Xiao, H., Li, Y., Liu, H., Guan, F., & Zhai, X. (2017). Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen Seawaters in China via Method of Illumina MiSeq sequencing. Frontiers in Microbiology, 8(SEP), 1-16. https://doi.org/10.3389/fmicb.2017.01737
  41. Long, S., Liu, X., Xiao, J., Ren, D., Liu, Z., Fu, Q., He, D., & Wang, D. (2024). Mitigation of triclocarban inhibition in microbial electrolysis cell-assisted anaerobic digestion. In Environmental Science & Technology, 9272-9282. https://doi.org/10.1021/acs.est.3c10604
  42. Lou, Y., Chang, W., Cui, T., Wang, J., Qian, H., Ma, L., Hao, X., & Zhang, D. (2021). Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review. Bioelectrochemistry, 141, 107883. https://doi.org/10.1016/j.bioelechem.2021.107883
  43. Maji, K., & Lavanya, M. (2024). Microbiologically influenced corrosion in stainless steel by Pseudomonas aeruginosa: An Overview. Journal of Bio- and Tribo-Corrosion, 10(1), 1-18. https://doi.org/10.1007/s40735-024-00820-w
  44. Maureira, D., Romero, O., Illanes, A., Wilson, L., & Ottone, C. (2023). Industrial bioelectrochemistry for waste valorization: State of the art and challenges. Biotechnology Advances, 64, 108123. https://doi.org/10.1016/j.biotechadv.2023.108123
  45. Mohd Rasid, Z. A., Omar, M. F., & Mohd Nazeri, M. F. (2017). Polarization study of Sn-0.7Cu solder alloy in 1 M hydrochloric solution. Materials Science Forum, 888 MSF, 394–399. https://doi.org/10.4028/www.scientific.net/MSF.888.394
  46. Moura, V., Ribeiro, I., Moriggi, P., Capão, A., Salles, C., Bitati, S., & Procópio, L. (2018). The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Archives of Microbiology, 200(10), 1447–1456. https://doi.org/10.1007/s00203-018-1559-2
  47. Orfei, L. H., Simison, S., & Busalmen, J. P. (2006). Stainless steels can be cathodically protected using energy stored at the marine sediment/seawater interface. Environmental Science and Technology, 40(20), 6473–6478. https://doi.org/10.1021/es060912m
  48. Patil, K. S., Padakandla, S. R., & Chae, J. C. (2018). Flavobacterium amnigenum sp. Nov. isolated from a river. Journal of Microbiology and Biotechnology, 28(9), 1536–1541. https://doi.org/10.4014/jmb.1806.06044
  49. Pessu, F., Barker, R., Chang, F., Chen, T., & Neville, A. (2021). Iron sulphide formation and interaction with corrosion inhibitor in H2S-containing environments. Journal of Petroleum Science and Engineering, 207, 1-13. https://doi.org/10.1016/j.petrol.2021.109152
  50. Rivera, I., Bakonyi, P., & Buitrón, G. (2017). H2 production in membraneless bioelectrochemical cells with optimized architecture: The effect of cathode surface area and electrode distance. Chemosphere, 171, 379–385. https://doi.org/10.1016/j.chemosphere.2016.12.061
  51. Rosenbaum, M., Aulenta, F., Villano, M., & Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresource Technology, 102(1), 324–333. http://dx.doi.org/10.1016/j.biortech.2010.07.008
  52. Rossi, R., Nicolas, J., & Logan, B. E. (2023). Using nickel-molybdenum cathode catalysts for efficient hydrogen gas production in microbial electrolysis cells. Journal of Power Sources, 560, 1-9. https://doi.org/10.1016/j.jpowsour.2022.232594
  53. Rozenfeld, S., Hirsch, L. O., Gandu, B., Farber, R., Schechter, A., & Cahan, R. (2019). Improvement of microbial electrolysis cell activity by using anode based on combined plasma-pretreated carbon cloth and stainless steel. Energies, 12(10), 1-15. https://doi.org/10.3390/en12101968
  54. Shaikh, R., Rizvi, A., Quraishi, M., Pandit, S., Mathuriya, A. S., Gupta, P. K., Singh, J., & Prasad, R. (2021). Bioelectricity production using plant-microbial fuel cell: Present state of art. South African Journal of Botany, 140, 393–408. https://doi.org/10.1016/j.sajb.2020.09.025
  55. Shamsuddin, R. A., Abu Bakar, M. H., Wan Daud, W. R., Hong, K. B., & Jahim, J. M. (2019). Can electrochemically active biofilm protect stainless steel used as electrodes in bioelectrochemical systems in a similar way as galvanic corrosion protection? International Journal of Hydrogen Energy, 44(58), 30512–30523. https://doi.org/10.1016/j.ijhydene.2019.03.089
  56. Shamsuddin, R. A., Wan Daud, W. R., Hong, K. B., Jahim, J. M., Abu Bakar, M. H., Aqma Wan Mohd Noor, W. S., & Yunus, R. M. (2018). Electrochemical characterisation of heat-treated metal and non-metal anodes using mud in microbial fuel cell. Sains Malaysiana, 47(12), 3043–3049. https://doi.org/10.17576/jsm-2018-4712-14
  57. Shi, X., Liang, Y., Wen, G., Evlashin, S. A., Fedorov, F. S., Ma, X., Feng, Y., Zheng, J., Wang, Y., Shi, J., Liu, Y., Zhu, W., Guo, P., & Kim, B. H. (2024). Review of cathodic electroactive bacteria: Species, properties, applications and electron transfer mechanisms. Science of The Total Environment, 946, 174332. https://doi.org/10.1016/j.scitotenv.2024.174332
  58. Singh, R. P., Zorrilla, S. E., Vidyarthi, S. K., Cocker, R., & Cronin, K. (2022). Dairy plant design, construction and operation. In P. L. H. McSweeney & J. P. McNamara (Eds.), Encyclopedia of Dairy Sciences (Third Edition) (pp. 239–252). Academic Press. https://doi.org/10.1016/B978-0-12-818766-1.00197-5
  59. Song, X., Zhang, G., Zhou, Y., & Li, W. (2023). Behaviors and mechanisms of microbially-induced corrosion in metal-based water supply pipelines: A review. Science of The Total Environment, 895, 165034. https://doi.org/10.1016/j.scitotenv.2023.165034
  60. St Clair, B., Pottenger, J., Debes, R., Hanselmann, K., & Shock, E. (2019). Distinguishing biotic and abiotic iron oxidation at low temperatures. ACS Earth and Space Chemistry, 3(6), 905–921. https://doi.org/10.1021/acsearthspacechem.9b00016
  61. Suhaili, M. Z., & Samsudin, M. D. M. (2018). Utilization of wastewater for corrosion prevention of carbon steel pipe using single chamber microbial fuel cells. Environment & Ecosystem Science, 2(2), 47–52. https://doi.org/10.26480/ees.02.2018.47.52
  62. Sun, Y., ter Heijne, A., Rijnaarts, H., & Chen, W.-S. (2022). The effect of anode potential on electrogenesis, methanogenesis and sulfidogenesis in a simulated sewer condition. Water Research, 226, 1-9. https://doi.org/10.1016/j.watres.2022.119229
  63. Swaminathan, P., Ghosh, A., Sunantha, G., Sivagami, K., Mohanakrishna, G., Aishwarya, S., Shah, S., Sethumadhavan, A., Ranjan, P., & Prajapat, R. (2024). A comprehensive review of microbial electrolysis cells: Integrated for wastewater treatment and hydrogen generation. Process Safety and Environmental Protection 190, 458–474). Institution of Chemical Engineers. https://doi.org/10.1016/j.psep.2024.08.032
  64. Tahir, M. F., Chen, H., Guangze, H., & Mehmood, K. (2022). Energy and exergy analysis of wind power plant: A case study of Gharo, Pakistan. Frontiers in Energy Research, 10, 1-12. https://doi.org/10.3389/fenrg.2022.1008989
  65. Telegdi, J., Shaban, A., & Trif, L. (2017). Microbiologically influenced corrosion (MIC). In Trends in Oil and Gas Corrosion Research and Technologies: Production and Transmission (pp. 191–214). Elsevier Inc. https://doi.org/10.1016/B978-0-08-101105-8.00008-5
  66. TWI Ltd. (2024, December 26). What is the Difference Between Carbon Steel and Stainless Steel? TWI Ltd. https://www.twi-global.com/technical-knowledge/faqs/carbon-steel-vs-stainless-steel#:~:text=Though%20they%20have%20the%20same,of%20steel%20its%20respective%20properties
  67. Wang, F., Xu, J., Xu, Y., Jiang, L., & Ma, G. (2020). A comparative investigation on cathodic protections of three sacrificial anodes on chloride-contaminated reinforced concrete. Construction and Building Materials, 246. https://doi.org/10.1016/j.conbuildmat.2020.118476
  68. Wu, Y., Zhou, Z., Fu, H., Zhang, P., & Zheng, Y. (2022). Metagenomic analysis of microbial community and gene function of anodic biofilm for nonylphenol removal in microbial fuel cells. Journal of Cleaner Production, 374, 133895. https://doi.org/10.1016/j.jclepro.2022.133895
  69. Xafenias, N., & Mapelli, V. (2014). Performance and bacterial enrichment of bioelectrochemical systems during methane and acetate production. International Journal of Hydrogen Energy, 39(36), 21864–21875. https://doi.org/10.1016/j.ijhydene.2014.05.038
  70. Xu, F. L., Duan, J. Z., Lin, C. G., & Hou, B. R. (2015). Influence of marine aerobic biofilms on corrosion of 316L stainless steel. Journal of Iron and Steel Research International, 22(8), 715–720. https://doi.org/10.1016/S1006-706X(15)30062-5
  71. Xu, L., Ivanova, S. A., & Gu, T. (2023). Mitigation of galvanized steel biocorrosion by Pseudomonas aeruginosa biofilm using a biocide enhanced by trehalase. Bioelectrochemistry, 154, 108508. https://doi.org/10.1016/j.bioelechem.2023.108508
  72. Xu, P., Ou, Y., & Wei, Z. (2020). Corrosion behavior of carbon steel in the presence of escherichia coli and pseudomonas fluorescens biofilm in reclaimed water. In Advances in Science, Technology and Innovation (pp. 141–144). https://doi.org/10.1007/978-3-030-13068-8_34
  73. Yun, W. H., Yoon, Y. S., Yoon, H. H., Nguyen, P. K. T., & Hur, J. (2021). Hydrogen production from macroalgae by simultaneous dark fermentation and microbial electrolysis cell with surface-modified stainless steel mesh cathode. International Journal of Hydrogen Energy, 46(79), 39136–39145. https://doi.org/10.1016/j.ijhydene.2021.09.168
  74. Yu, Z., Zia‐ul‐haq, H. M., Irshad, A. ur R., Tanveer, M., Jameel, K., & Janjua, L. R. (2022). nexuses between crude oil imports, renewable energy, transport services, and technological innovation: A fresh insight from Germany. Journal of Petroleum Exploration and Production Technology, 12(11), 2887–2897. https://doi.org/10.1007/s13202-022-01487-0
  75. Zhang, M., Ma, Z., Zhao, N., Zhang, K., & Song, H. (2019). Increased power generation from cylindrical microbial fuel cell inoculated with P. aeruginosa. Biosensors and Bioelectronics, 141, 1-27. https://doi.org/10.1016/j.bios.2019.111394
  76. Zhang, Y. C., Jiang, Z. H., & Liu, Y. (2015). Application of electrochemically active bacteria as anodic biocatalyst in microbial fuel cells. In Chinese Journal of Analytical Chemistry (Vol. 43, Issue 1, pp. 155–163). Chinese Academy of Sciences. https://doi.org/10.1016/S1872-2040(15)60800-3
  77. Zhang, Y., Merrill, M. D., & Logan, B. E. (2010). The use and optimization of stainless steel mesh cathodes in microbial electrolysis cells. International Journal of Hydrogen Energy, 35(21), 12020–12028. https://doi.org/10.1016/j.ijhydene.2010.08.064
  78. Zhao, J., Fang, Y., Scheibe, T. D., Lovley, D. R., & Mahadevan, R. (2010). Modeling and sensitivity analysis of electron capacitance for Geobacter in sedimentary environments. Journal of Contaminant Hydrology, 112(1–4), 30–44. https://doi.org/10.1016/j.jconhyd.2009.10.002
  79. Zhao, Y. G., Zhang, Y., She, Z., Shi, Y., Wang, M., Gao, M., & Guo, L. (2017). Effect of substrate conversion on performance of microbial fuel cells and anodic microbial communities. Environmental Engineering Science, 34(9), 666–674. https://doi.org/10.1089/ees.2016.0604
  80. Zhou, E., Lekbach, Y., Gu, T., & Xu, D. (2022). Bioenergetics and extracellular electron transfer in microbial fuel cells and microbial corrosion. In Current Opinion in Electrochemistry (Vol. 31), 1-7. Elsevier B.V. https://doi.org/10.1016/j.coelec.2021.100830
  81. Zhou, H., Chhin, D., Morel, A., Gallant, D., & Mauzeroll, J. (2022). Potentiodynamic polarization curves of AA7075 at high scan rates interpreted using the high field model. Npj Materials Degradation, 6(1), 1-11. https://doi.org/10.1038/s41529-022-00227-3

Last update:

No citation recorded.

Last update: 2026-02-02 23:09:15

No citation recorded.