skip to main content

Predictive accuracy and characterisation of bio-oil yield from pyrolysis of Cocos nucifera: A comparison of traditional RSM and hybrid models

1Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Pretoria 0183, South Africa

2Department of Mechanical Engineering, Pan-Atlantic University, Lekki, 105101, Nigeria

3Department of Electrical Engineering, Tshwane University of Technology, Pretoria 0183, South Africa

Received: 9 Mar 2025; Revised: 7 May 2025; Accepted: 17 May 2025; Available online: 17 Sep 2025; Published: 1 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The pressing demand for renewable energy has made biomass a quintessential alternative to fossil fuels. This study aims to develop and compare predictive models for optimising bio-oil yield from the intermediate pyrolysis of Cocos nucifera, utilising response surface methodology with the central composite design and hybrid models (PSO-ANFIS and GA-ANFIS). It seeks to characterize the bio-oil yield to investigate its quality for use as a biofuel. An experimental run was performed by varying pyrolysis operating parameters, namely, temperature (300–700°C), heating rate (6–30°C/min), residence time (5–25 minutes), particle size (0.5–4.5 mm), and nitrogen flow rate (10–50 mL/min).  Hybrid models (PSO-ANFIS and AN-FIS-GA) were used to predict the bio-oil yield to identify the most robust model. An optimum bio-oil yield (52.17 wt.%) was attained at a temperature, heating rate, residence time, particle size, and nitrogen flow rate of 510.2°C, 10.5°C/min, 5.2 minutes, 0.3 mm, and 17.3 mL/min, respectively.  The study shows that its hybrid models are scalable and outperform traditional techniques (RSM) in terms of predictive accuracy and computational efficiency. The GC-MS analysis identified over 200 compounds in bio-oil, comprising mainly phenols, esters, and oleic acids, which confirmed its suitability for producing biofuels, lubricants, and pharmaceuticals. Also, FTIR analysis confirms functional groups of biodiesel, adhesives, and resins. The PSO-ANFIS and GA-ANFIS models accurately predict the bio-oil yield, with the PSO-ANFIS model outperforming the other models with an R² of 0.994 and RMSE of 0.449 during the test phase, representing a two- to three-fold improvement over traditional RSM. Unlike conventional empirical models, the hybrid approach improves predictive accuracy and reduces the number of required experiments and computational errors, enabling real-time adjustments to the pyrolysis process, thereby advancing pyrolysis research and bio-oil optimization. This research is highly relevant for improving waste-to-energy production in regions where Cocos nucifera residues remain abundant, especially in emerging economies.

Fulltext View|Download
Keywords: Biofuels; Biomass; Characterization; Intermediate pyrolysis; Response Surface Methodology; Hybrid Models

Article Metrics:

  1. Abatyough, M. T., Ajibola, V. O., Agbaji, E. B., & Yashim, Z. I. (2022). Properties of upgraded bio-oil from pyrolysis of waste corn cobs. Journal of Sustainability and Environmental Management, 1(2), 120–128. https://doi.org/10.3126/josem.v1i2.45348
  2. Abatyough, M., Ajibola, V. O., Agbaji, E. B., & Yashim, Z. (2022). Optimization of reaction conditions for bio-oil production from pyrolysis of corncobs. Journal Of Chemical Society Of Nigeria, 47(2). https://doi.org/10.46602/jcsn.v47i2.728
  3. Abbasi, S., & Diwekar, U. M. (2014). Characterization and stochastic modeling of uncertainties in the biodiesel production. Clean Technologies and Environmental Policy, 16(1), 79–94. https://doi.org/10.1007/S10098-013-0596-4
  4. Abonyi, M. N., Nwabanne, J. T., Ohale, P. E., Nwadike, E. C., Igbonekwu, L. I., Chukwu, M. M., & Madiebo, E. M. (2023). Application of RSM and ANFIS in the optimal parameter evaluation for crude oil degradation in contaminated water amended with PES. Case Studies in Chemical and Environmental Engineering, 8, 100483. https://doi.org/10.1016/j.cscee.2023.100483
  5. Afrah, B. D., Riady, M. I., Arsadha, J. P., Rimadhina, R., Cundari, L., & Izzah, R. Z. (2024). Effect of Pyrolysis Temperature and Biomass Composition on Bio-Oil Characteristics. Ecological Engineering & Environmental Technology, 25. https://doi.org/10.12912/27197050/181152
  6. Agrizzi, T., Oliveira, M. A., Faria, E. V., Santos, K. G., Xavier, T. P., & Lira, T. S. (2024). Assessing coconut shell pyrolysis: Biomass characterization, activation energy estimation, and statistical analysis of operating conditions. Bioresource Technology Reports, 26, 101831. https://doi.org/10.1016/j.biteb.2024.101831
  7. Agu, C. M., Ani, K. A., Ani, O. N., Nnaji, P. C., Kadurumba, C. H., & Esonye, C. (2024). Application of efficient soft computing approaches for modeling methyl ester yield from Azadirachta Indica (Neem) seed oil: A comparative study of RSM, ANN and ANFIS. Green Technologies and Sustainability, 2(1), 100057. https://doi.org/10.1016/j.grets.2023.100057
  8. Ahmad, R. K., Sulaiman, S. A., Dol, S. S., & Umar, H. A. (2021). The Potential of Coconut Shells Through Pyrolysis Technology in Nigeria. In S. A. Sulaiman (Ed.), Clean Energy Opportunities in Tropical Countries (pp. 151–175). Springer Singapore. https://doi.org/10.1007/978-981-15-9140-2_8
  9. Ahmed, A., Harun, N. Y., Waqas, S., Arshad, U., & Ghalib, S. A. (2024). Optimization of Operational Parameters Using Artificial Neural Network and Support Vector Machine for Bio-oil Extracted from Rice Husk. ACS Omega, 9(24), 26540–26548. https://doi.org/10.1021/acsomega.4c03131
  10. Akuwueke, L. M., Ossia, C. V., and Nwosu, H. U. (2024). Proximate Property and Thermal Stability Characterization of Chemically Activated Carbon for Organic Friction Lining Materials. Nigerian Journal of Technology, 43(3), pp. 454 – 463. https://doi.org/10.4314/njt.v43i3.7
  11. ASTM International. (2021). Standard test method for acid-insoluble lignin in wood (ASTM Standard No. D1106-21). ASTM International
  12. ASTM International. (2002). Standard test method for moisture in the analysis sample of coal and coke (ASTM Standard No. D3173-02). ASTM International
  13. ASTM International. (2011). Standard test method for ash in the analysis sample of coal and coke from coal (ASTM Standard No. D3174-02(2011)). ASTM International
  14. ASTM International. (2020). Standard test method for volatile matter in the analysis sample of coal and coke (ASTM Standard No. D3175-20). ASTM International
  15. ASTM International. (2011). Standard test method for sulfur in the analysis sample of coal and coke using high-temperature tube furnace combustion (ASTM Standard No. D4239-11). ASTM International
  16. ASTM International. (2016). Standard test method for determination of carbon, hydrogen, and nitrogen in analysis samples of coal and carbon in analysis samples of coal and coke (ASTM Standard No. D5373-16). ASTM International
  17. ASTM International. (2013). Standard test method for gross calorific value of coal and coke (ASTM Standard No. D5865-13). ASTM International
  18. ASTM International. (2013). Standard practice for general techniques for obtaining infrared spectra for qualitative analysis (ASTM Standard No. E1252-98(2013)). ASTM International
  19. ASTM International. (2020). Standard test method for determination of carbohydrates in biomass by high performance liquid chromatography (ASTM Standard No. E1758-01(2020)). ASTM International
  20. Azeta, O., Ayeni, A. O., Agboola, O., & Elehinafe, F. B. (2021). A review on the sustainable energy generation from the pyrolysis of coconut biomass. Scientific African, 13, e00909. https://doi.org/10.1016/j.sciaf.2021.e00909
  21. Azizi, M. W., Bensouici, M., & Bensouici, F. Z. (2024). Thermoexergetic analysis and multi-objective optimization of steam power plant performances. AIUB Journal of Science and Engineering (AJSE), 23(2), 124–134. https://doi.org/10.53799/ajse.v23i2.909
  22. Berggren, M. (2023). Coefficients of determination measured on the same scale as the outcome. https://doi.org/10.31234/osf.io/svuf8
  23. Chhikara, A., Dhingra, A. K., & Kumar, P. (2023). Improvement and Optimisation of Castor Oil Bio-diesel Using RSM and ANN-GA (pp. 257–272). Springer Nature. https://doi.org/10.1007/978-981-99-1308-4_21
  24. Chan, Y. H., Yusup, S., Quitain, A. T., Uemura, Y., & Loh, S. K. (2017). Fractionation of pyrolysis oil via supercritical carbon dioxide extraction: Optimization study using response surface methodology (RSM). Biomass & Bioenergy, 107, 155–163. https://doi.org/10.1016/J.BIOMBIOE.2017.10.005
  25. Chantarangsi, W., Liu, W., Bretz, F., Kiatsupaibul, S., Hayter, A. J., & Wan, F. (2015). Normal probability plots with confidence. Biometrical Journal, 57(1), 52–63. https://doi.org/10.1002/bimj.201300244
  26. Chen, X., Pei, Y., Wang, X., Zhou, W., & Jiang, L. (2024). Response Surface Methodology—Central Composite Design Optimization Sugarcane Bagasse Activated Carbon under Varying Microwave-Assisted Pyrolysis Conditions. Processes, 12(3), 497. https://doi.org/10.3390/pr12030497
  27. Chukwuneke, J. L., Sinebe, J. E., Orugba, H. O., & Ajike, C. (2022). Process Optimization for Enhancing Yield and Quality of Bio-Oil from the Pyrolysis of Cow Hooves. International Journal of Design & Nature and Ecodynamics, 17(3), 453–461. https://doi.org/10.18280/ijdne.170317
  28. Chukwuneke, J. L., Ewulonu, M. C., Chukwujike, I. C., & Okolie, P. C. (2019). Physico-chemical analysis of pyrolyzed bio-oil from swietenia macrophylla (mahogany) wood. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01790
  29. Cuevas, E., Ascencio-Piña, C. R., Pérez, M., & Morales-Castañeda, B. (2024). Considering radial basis function neural network for effective solution generation in metaheuristic algorithms. Scientific Reports, 14(1), 16806. https://doi.org/10.1038/s41598-024-67778-0
  30. Di Lauro, F., Amadei, A., Balsamo, M., Damizia, M., de Caprariis, B., De Filippis, P., Solimene, R., Salatino, P., & Montagnaro, F. (2024). Effect of the reactor heating rate on bio-crude yield and quality from hydrothermal liquefaction of different sludge. Fuel Communications, 19, 100113. https://doi.org/10.1016/j.jfueco.2024.100113
  31. Djandja, O. S., Salami, A. A., Yuan, H., Lin, H., Huang, Z., & Kang, S. (2023). Machine learning prediction of bio-oil yield during solvothermal liquefaction of lignocellulosic biowaste. Journal of Analytical and Applied Pyrolysis. https://doi.org/10.1016/j.jaap.2023.106209
  32. Garg, A., Basu, S., Shetti, N. P., Bhattu, M., Alodhayb, A., & Pandiaraj, S. (2024). Biowaste to bioenergy nexus: Fostering sustainability and circular economy. Environmental Research, 118503. https://doi.org/10.1016/j.envres.2024.118503
  33. Haq, Z. U., Ullah, H., Khan, M. N. A., Naqvi, S. R., Ahad, A., & Amin, N. A. S. (2022). Comparative study of machine learning methods integrated with genetic algorithm and particle swarm optimization for biochar yield prediction. Bioresource Technology, 363, 128008. https://doi.org/10.1016/j.biortech.2022.128008
  34. Hasan, M. M., Rasul, M. G., Jahirul, M. I., & Khan, M. M. K. (2023). Fast pyrolysis of macadamia nutshell in an auger reactor: Process optimization using response surface methodology (RSM) and oil characterization. Fuel, 333, 126490. https://doi.org/10.1016/j.fuel.2022.126490
  35. Hassan, H., Ahmad, M. A., Zali, N. D. A., Musa, M. Z., & Senusi, F. (2024). Co-pyrolysis of palm kernel shell and discarded medical bottle for biofuel production: Synergistic effect and product distribution. Waste Management Bulletin, 1(4), 182–194. https://doi.org/10.1016/j.wmb.2023.11.001
  36. Hassan, S. N., Ishak, M. A., & Ismail, K. (2019). Optimizing the physical parameters to achieve maximum products from co-liquefaction using response surface methodology. Fuel, 207, 102–108. http://dx.doi.org/10.1016/j.fuel.2017.06.077
  37. Huang, D., Wang, Y., Song, G., Hu, S., Li, H., Zhang, Y., Wang, Y., Su, S., El-Sayed, S. A., & Xiang, J. (2023). Study on thermal properties of biochar prepared by photo-thermal pyrolysis. Biomass and Bioenergy, 178, 106969. http://dx.doi.org/10.3390/en10040469
  38. Huraira, M. M., Saravanathamizhan, R., Israel, T. T., Haripriyan, U., & Perarasu, V. T. (2023). Modeling and optimization of the yield of pyrolytic oil from waste face masks using RSM‐ANN‐LM hybrid approach. Environmental Quality Management. https://doi.org/10.1002/tqem.22133
  39. Ikpeseni, S. C., Sada, S. O., Efetobor, U. J., Orugba, H. O., Ekpu, M., Owamah, H. I., Chukwuneke, J. L., Oyebisi, S., & Onochie, U. P. (2024). Optimization of bio-oil production parameters from the pyrolysis of elephant grass (Pennisetum purpureum) using response surface methodology. Clean Energy, 8(5), 241–251. https://doi.org/10.1093/ce/zkae064
  40. Jabeen, S., Baig, M., & Awais, M. M. (2023). ANFIS learning using expectation maximization based Gaussian mixture model and multilayer perceptron learning. Applied Soft Computing, 149, 110958. https://doi.org/10.1016/j.asoc.2023.110958
  41. Jalalifar, S. (2020). Operational management of fast pyrolysis process using numerical modelling [PhD Thesis, University of Tasmania]. https://doi.org/10.25959/100.00035036
  42. https://figshare.utas.edu.au/articles/thesis/Operational_management_of_fast_pyrolysis_process_using_numerical_modelling/23253788/1
  43. Jalalinejad, A., Yousefi Seyf, J., Funke, A., & Dahmen, N. (2024). Phase Equilibrium Calculation of Bio-Oil-Related Molecules Using Predictive Thermodynamic Models. Energy & Fuels, 38(4), 3171–3185. https://doi.org/10.1021/acs.energyfuels.3c04395
  44. Jitpinit, S., Chisti, Y., Rattanasak, U., Rakmak, N., & Nuithitikul, K. (2024). Hydrothermal liquefaction of oil-palm-derived lignin to bio-oils for use as antioxidants in biodiesel. Journal of Industrial and Engineering Chemistry, 135, 243–256. http://dx.doi.org/10.1016/j.jiec.2024.01.036
  45. Karacor, B., & Özcanlı, M. (2024). A Short Review: The Use and Application of Matrix Resins Formed with Some Plant-Based Oils in Bio-Composite Materials. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 12(3), 1315–1333. https://doi.org/10.29130/dubited.1265905
  46. Kaur, L., Singh, J., Ashok, A., & Kumar, V. (2024). Design expert based optimization of the pyrolysis process for the production of cattle dung bio-oil and properties characterization. Dental Science Reports, 14(1), 9421. https://doi.org/10.1038/s41598-024-57843-z
  47. Kim, J. S., & Park, K. B. (2020). Production of Phenols by Lignocellulosic Biomass Pyrolysis (pp. 289–319). Springer, Singapore. https://doi.org/10.1007/978-981-15-2732-6_11
  48. Kozak, M., & Piepho, H. ‐P. (2018). What’s normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. Journal of Agronomy and Crop Science, 204(1), 86–98. https://doi.org/10.1111/jac.12220
  49. Kumar, M., Mishra, P. K., & Upadhyay, S. N. (2019). Pyrolysis of Saccharum munja: Optimization of process parameters using response surface methodology (RSM) and evaluation of kinetic parameters. Bioresource Technology Reports, 8, 100332. https://doi.org/10.1016/j.biteb.2019.100332
  50. Kumar, S., & Bansal, S. (2023). Performance evaluation of ANFIS and RSM in modeling biodiesel synthesis from soybean oil. Biosensors and Bioelectronics: X, 15, 100408. https://doi.org/10.1016/j.biosx.2023.100408
  51. Kundu, R., Parsad, R., & Mandal, B. N. (2024). Response surface designs with four and six equi-spaced levels. Communications in Statistics - Theory and Methods, 1–14. https://doi.org/10.1080/03610926.2024.2423816
  52. Laougé, Z. B., Çığgın, A. S., & Merdun, H. (2020). Optimization and characterization of bio-oil from fast pyrolysis of Pearl Millet and Sida cordifolia L. by using response surface methodology. Fuel, 274, 117842. http://dx.doi.org/10.1016/j.fuel.2020.117842
  53. Li, Z., Zhao, D., Han, L., Yu, L., & Jafari, M. M. M. (2021). Improved Estimation of Bio-Oil Yield Based on Pyrolysis Conditions and Biomass Compositions Using GA- and PSO-ANFIS Models. BioMed Research International, 2021, 1–9. https://doi.org/10.1155/2021/2204021
  54. Ma, H., & Chen, D. (2024). Direct conversion of lignin to liquid hydrocarbons for sustainable biomass valorization. Catalysis Today, 441, 114882. https://doi.org/10.1016/j.cattod.2024.114882
  55. Mathur, J., Baruah, B., & Tiwari, P. K. (2022). Prediction of Bio‐Oil yield during pyrolysis of lignocellulosic biomass using Machine Learning Algorithms. Canadian Journal of Chemical Engineering, 101(5), 2457–2471. https://doi.org/10.1002/cjce.24674
  56. Mbah, C., Nwafulugo, F., & Ezetoha, N. (2024). Comparism of Response Surface Methodology (RSM) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) in Optimisation of Soybean Soapstock Biodiesel Production. Advances, 5(2), 49–63. https://doi.org/10.11648/j.advances.20240502.13
  57. Mian, I., Rehman, N., Li, X., Ullah, H., Khan, A., Choi, C., & Han, C. (2024). Effect of Heating Rate on the Pyrolysis Behavior and Kinetics of Coconut Residue and Activated Carbon: A Comparative Study. Energies, 17(18), 4605. https://doi.org/10.3390/en17184605
  58. Mohammed, I. Y., Abakr, Y. A., Yusup, S., & Kazi, F. K. (2017). Valorization of Napier grass via intermediate pyrolysis: Optimization using response surface methodology and pyrolysis products characterization. Journal of Cleaner Production, 142, 1848–1866. https://doi.org/10.1016/j.jclepro.2016.11.099
  59. Mwenge, P., Rutto, H., & Seodigeng, T. (2024). Modelling and Optimisation of Biodiesel Production from Margarine Waste Oil Using a Three-Dimensional Machine Learning Approach. 22, 27. https://doi.org/10.3390/engproc2024067027
  60. Nawaz, A., Razzak, S. A., & Kumar, P. (2024). Pyrolysis parameter based optimization study using response surface methodology and machine learning for potato stalk. Journal of the Taiwan Institute of Chemical Engineers, 159, 105476. http://dx.doi.org/10.1016/j.jtice.2024.105476
  61. Okokpujie, I. P., Onokwai, A. O., Onokpite, E., Babaremu, K., Ajisegiri, E. S. A., Osueke, C. O., Akinlabi, S. A., & Akinlabi, E. T. (2023). Modelling and optimisation of intermediate pyrolysis synthesis of bio-oil production from palm kernel shell. Cleaner Engineering and Technology, 16, 100672. https://doi.org/10.1016/j.clet.2023.100672
  62. Olayokun, O. E., Anyaegbuna, B. E., Onokwai, A. O., Faola, D. I., Muslim, I. O., Eruobodo, A. O., & Adiatu, A. O. (2024). Review of Biomass as a Renewable Energy for Sustainable Environment. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–7. http://dx.doi.org/10.1109/SEB4SDG60871.2024.10629775
  63. Onochie, U. P., Ofomatah, A. C., Onwurah, C., Tyopine, A. A., Akingba, O. O., Kubeynje, B. F., Aluma, C. C., Alozie, C. (2023). Potentials of Biomass Waste Resources with Respect to their Calorific Value, Proximate and Ultimate Analysis for Energy Utilization. IOP Conf. Series: Earth and Environmental Science, 1178, 012012, IOP https://doi.org/10.1088/1755-1315/1178/1/012012
  64. Onokwai, A. O., Akuru, U. B., & Desai, D. A. (2025). Mathematical Modelling and Optimisation of Operating Parameters for Enhanced Energy Generation in Gas Turbine Power Plant with Intercooler. Mathematics, 13(1), 174. https://doi.org/10.3390/math13010174
  65. Onokwai, A. O., Okokpujie, I. P., Ajisegiri, E. S. A., Nnodim, C. T., Kayode, J. F., & Tartibu, L. K. (2024). Application of response surface methodology for the modelling and optimisation of bio-oil yield via intermediate pyrolysis process of sugarcane bagasse. Advances in Materials and Processing Technologies, 10(4), 3028–3046. https://doi.org/10.1080/2374068X.2023.2193310
  66. Onokwai, A. O., Okokpujie, I. P., Ajisegiri, E. S., Oki, M., Adeoye, A. O., & Akinlabi, E. T. (2022). Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields. International Journal of Renewable Energy Development, 11(4). https://doi.org/10.14710/ijred.2022.45549
  67. Othman, P. S., Ihsan, R. R., & Abdulhakeem, R. M. (2022). The Genetic Algorithm (GA) in Relation to Natural Evolution. Academic Journal of Nawroz University, 11(3), 243–250
  68. Oyebanji, J. A., Okekunle, P. O., Lasode, O. A., & Oyedepo, S. O. (2018). Chemical composition of bio-oils produced by fast pyrolysis of two energy biomass. Biofuels, 9(4), 479–487. https://doi.org/10.1080/17597269.2017.1284473
  69. Oyebanji, J. A., Onokwai, A. O., Okokpujie, I. P., Ukegbu, C. F., SuyiAjayi, A., Nnochiri, E. S., & Tartibu, L. K. (2023). Characterization of Adansonia Digitata (Baobab Wood) Bio-Oil and Biochar Produced Using a Fixed-Bed Tubular Reactor. Journal of Composite & Advanced Materials/Revue Des Composites et Des Matériaux Avancés, 33(1). https://doi.org/10.18280/rcma.330208
  70. Özbay, G., & Kokten, E. S. (2019). Modeling of Bio-Oil Production by Pyrolysis of Woody Biomass: Artificial Neural Network Approach. Journal of Polytechnic, 23(4), 1255–1264. https://doi.org/10.2339/POLITEKNIK.659136
  71. Pang, Z. (2008). Production and Market Analysis of Bisphenol A. Chemical Industry. https://en.cnki.com.cn/Article_en/CJFDTOTAL-HGJJ200809009.htm
  72. Prasetiawan, H., Hadiyanto, Fardhyanti, D. S., Fatriasari, W., Chafidz, A., Rakasiwi, A. G., Kaja, Y. V., Rahma, N. F., & Laili, I. R. (2023). Bio Oil Production from Multi-Feed Stock Biomass Waste and the Upgrading Process for Quality Improvement - Mini Review. IOP Conference Series: Earth and Environmental Science, 1203(1), Article 012040. https://doi.org/10.1088/1755-1315/1203/1/012040
  73. Rahimi, M., Mashhadimoslem, H., Thanh, H. V., Ranjbar, B., Khosrowshahi, M. S., Rohani, A., & Elkamel, A. (2023). Yield prediction and optimization of biomass-based products by multi-machine learning schemes: Neural, regression and function-based techniques. Energy, 283, 128546. http://dx.doi.org/10.1016/j.energy.2023.128546
  74. Rasheed, H. A., Ayuba, S., Adeleke, A., Ogedengbe, T. S., Nzerem, P., & Ikubanni, P. P. (2023). Compositional Analysis and Characterisation of Non-edible Plant Biomass for Carboxymethyl Cellulose Production. 1, 1–5. https://doi.org/10.1109/icmeas58693.2023.10379365
  75. Ratnasari, R., Wardhani, G. A. P. K., & Taufiq, A. (2024). Bio-oil Quality Based on Coconut Carbon Biomass Using Pyrolisis Method. Indonesian Journal of Chemical Research, 12(2), 153–163. http://dx.doi.org/10.30598/ijcr.2024.12-rif
  76. Roy, P., Rahman, T., Jackson, R. L., Jahromi, H., & Adhikari, S. (2023). Hydrocarbon biolubricants from hydrotreated renewable and waste derived liquid intermediates. Journal of Cleaner Production, 409, 137120. https://doi.org/10.1016/j.jclepro.2023.137120
  77. Salameh, T., Sayed, E. T., Olabi, A. G., Hdaib, I. I., Allan, Y., Alkasrawi, M., & Abdelkareem, M. A. (2022). Adaptive network fuzzy inference system and particle swarm optimization of biohydrogen production process. Fermentation, 8(10), 483. https://doi.org/10.3390/fermentation8100483
  78. Salim, R. M., Asik, J., & Sarjadi, M. S. (2021). Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Science and Technology, 55(2), 295–313. https://doi.org/10.1007/S00226-020-01258-2
  79. Sareekam, N., Kamarudin, S. K., & Kasmuri, N. H. (2016). Optimization of Bio Oil from Palm Oil Fronds Via Fast Pyrolysis. Indian Journal of Science and Technology, 9(21), 95232. https://doi.org/10.17485/IJST/2016/V9I21/95232
  80. Şener, R., Koç, M. A., & Ermiş, K. (2024). Hybrid ANFIS-PSO algorithm for estimation of the characteristics of porous vacuum preloaded air bearings and comparison performance of the intelligent algorithm with the ANN. Engineering Applications of Artificial Intelligence, 128, 107460. https://doi.org/10.1016/j.engappai.2023.107460
  81. Simonsen, T. I., Djajadi, D. T., Montanvert, H., Sgarzi, M., Gigli, M., Thomsen, S. T., Orozco, Y. C., & Crestini, C. (2024). Improving the production efficiency and sustainability of lignin-alcohol fuel processed at ambient temperature. Bioresource Technology, 408, 131087. https://doi.org/10.1016/j.biortech.2024.131087
  82. Tabal, A., Belyazid, O., Dahman, H., Berrich, E., Jeguirim, M., El Achaby, M., El Harfi, K., & Aboulkas, A. (2023). Intermediate pyrolysis of Ficus nitida wood in a fixed-bed reactor: Effect of pyrolysis parameters on bio-oil and biochar yields and properties. Comptes Rendus. Chimie, 26(S1), 1–17. http://dx.doi.org/10.5802/crchim.253
  83. Tang, Z., Li, L., & Pang, C. H. (2024). Review of Biomass Gasification and Pyrolysis Process Based on Long Short-Term Memory Network. Applied and Computational Engineering, 103, 162–168. http://dx.doi.org/10.54254/2755-2721/103/20241158
  84. Téllez, J. F., Silva, M. P., Simister, R., Gomez, L. D., Fuertes, V. C., De Paoli, J. M., & Moyano, E. L. (2021). Fast pyrolysis of rice husk under vacuum conditions to produce levoglucosan. Journal of Analytical and Applied Pyrolysis, 156, 105105. http://dx.doi.org/10.1016/j.jaap.2021.105105
  85. Titov, A. P. (2024). Analysis of models of adaptive neuro-fuzzy systems. Vestnik RGGU. Seriâ: Informatika. Informacionnaâ Bezopasnostʹ. Matematika, 1, 21–35. https://doi.org/10.28995/2686-679x-2024-1-21-35
  86. Tumuluru, J. S., & Heikkila, D. J. (2019). Biomass grinding process optimization using response surface methodology and a hybrid genetic algorithm. Bioengineering, 6(1), 12. https://doi.org/10.3390/bioengineering6010012
  87. Vellaiyan, S., Chandran, D., Venkatachalam, R., Ramalingam, K., Rao, R., & Raviadaran, R. (2024). Maximizing waste plastic oil yield and enhancing energy and environmental metrics through pyrolysis process optimization and fuel modification. Results in Engineering, 22, 102066. https://doi.org/10.1016/j.rineng.2024.102066
  88. Wakatuntu, J., Olupot, P. W., Jjagwe, J., Menya, E., & Okure, M. (2023). Optimization of pyrolysis conditions for production of rice husk-based bio-oil as an energy carrier. Results in Engineering, 17, 100947
  89. Wulandari, Y. R., Chen, S. S., Hermosa, G. C., Hossain, M. S. A., Yamauchi, Y., Ahamad, T., Alshehri, S. M., Wu, K. C., & Wu, H.-S. (2020). Effect of N2 flow rate on kinetic investigation of lignin pyrolysis. Environmental Research, 190, 109976
  90. Xu, L., Jiang, L., Zhang, H., Fang, Z., & Smith, R. L. (2020). Introduction to Pyrolysis as a Thermo-Chemical Conversion Technology. In Z. Fang, R. L. Smith Jr, & L. Xu (Eds.), Production of Biofuels and Chemicals with Pyrolysis (Vol. 10, pp. 3–30). Springer Singapore. https://doi.org/10.1007/978-981-15-2732-6_1
  91. Yi, Z., Li, C., Lin, H., Zhang, S., Huang, Y., Li, B., Wang, S., & Hu, X. (2023). Pyrolysis of sawdust impregnated with bio-oil of the same origin: Influence of organics in bio-oil on property of biochar. Biomass and Bioenergy, 178, 106961
  92. Yuan, H., Tsukuda, T., Yang, Y., Shibata, G., Kobashi, Y., & Ogawa, H. (2022). Effects of chemical compositions and cetane number of Fischer–Tropsch fuels on diesel engine performance. Energies, 15(11), 4047
  93. Zhao, C., Lü, X., Jiang, Z., Ma, H., Chen, J., & Liu, X. (2024). Prediction of bio-oil yield by machine learning model based on “enhanced data” training. Renewable Energy, 225, 120218. https://doi.org/10.1016/j.renene.2024.120218
  94. Zou, S., Lei, J., Gao, T., Xu, X., & Gou, Q. (2023). C···S Tetrel Bond Favored in the Phenyl Isothiocyanate-CO2 Complex: A Rotational Study. Journal of Physical Chemistry A. https://doi.org/10.1021/acs.jpca.3c05187

Last update:

No citation recorded.

Last update: 2025-10-07 04:43:38

No citation recorded.