skip to main content

View PDF Download fulltext

Hybrid WRF–SARIMA model to improve day-ahead wind speed forecast accuracy

1Faculty of Mechanical Engineering, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, Mexico

2Institute of Atmospheric Sciences and Climate Change, National Autonomous University of Mexico, Mexico

3National Center for Technological Research and Development, National Technological Institute of Mexico, Morelos, Mexico

Received: 4 Sep 2025; Revised: 17 Oct 2025; Accepted: 28 Nov 2025; Available online: 10 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Accurate wind speed forecasts are critical for integrating wind energy into power grids, reducing imbalance costs in electricity markets, and optimizing wind farm operations. Day-ahead forecasts are typically generated using numerical weather prediction (NWP) models. This work proposes a hybrid model for 24-hour wind speed forecasting, which combines the Weather Research and Forecasting (WRF) model with the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. The proposed model improves the accuracy of the WRF wind speed forecast through the SARIMA technique by identifying significant autocorrelations in the forecast errors. The study was conducted in La Ventosa, Mexico, a region with significant development in the wind power sector. Wind speed data measured at heights of 17.5 m and 40 m were used during periods of low and high wind speeds. The model’s performance was evaluated using the metrics mean absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). The results showed that the hybrid WRF-SARIMA model outperformed the WRF model. Forecast errors for MAE were reduced between 29% and 45%, for MSE between 40% and 67%, and for RSME between 22% and 43%. The WRF-SARIMA leverages the benefits of physical NWP models while incorporating the interpretability and reduced computational cost of traditional statistical models. In this way, the proposed model improves wind speed forecast accuracy, especially in the operational contexts of wind energy management.

Keywords: Wind energy; WRF; SARIMA; Wind speed forecast; Day-ahead

Article Metrics:

  1. Aasim, Singh, S. A., Mohapatra, A. (2019). Repeated wavelet transform based arima model for very short-term wind speed forecasting, Renewable Energy, 136, 758–768. https://doi.org/10.1016/j.renene.2019.01.031
  2. Al-Yahyai, S., Charabi, Y., Gastli, A. (2010). Review of the use of numerical weather prediction (NWP) models for wind energy assessment. Renewable and Sustainable Energy Reviews, 14(9), 3192–3198. https://doi.org/10.1016/j.rser.2010.07.001
  3. Chen, S.-H., Yang, S.-C., Chen, C.-Y., Van Dam, C., Cooperman, A., Shiu, H., MacDonald, C., Zack, J. (2019). Application of bias corrections to improve hub height ensemble wind forecasts over the Tehachapi wind resource area. Renewable Energy, 140, 281–291. https://doi.org/10.1016/j.renene.2019.03.043
  4. Costa, M. A., Ruiz-Cárdenas, R., Mineti, L. B., Prates, M. O. (2021). Dynamic time scan forecasting for multi-step wind speed prediction. Renewable Energy, 177, 584–595. https://doi.org/10.1016/j.renene.2021.05 .160
  5. Ding, L., Bai, Y., Liu, M.-D., Fan, M.-H., Yang, J. (2022). Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network. Energy, 244, 122630. https://doi.org/10.1016/j.energy.2021.122630
  6. Duan, J., Zuo, H., Bai, Y., Duan, J., Chang, M., Chen, B. (2021). Short-term wind speed forecasting using recurrent neural networks with error correction. Energy, 217, 119397. https://doi.org/10.1016/j.energy.2020.119397
  7. Dzebre, D. E., Adaramola, M. S. (2020). A preliminary sensitivity study of planetary boundary layer parameterisation schemes in the weather research and forecasting model to surface winds in coastal Ghana. Renewable Energy, 146, 66–86. https://doi.org/10.1016/j.renene.2019.06.133
  8. El-Fouly, T. H. M., El-Saadany, E. F., & Salama, M. M. A. (2008). One day ahead prediction of wind speed and direction. IEEE Transactions on Energy Conversion, 23 (1) 191–201
  9. Grupo Interacción Océano-Atmósfera (IOA) del Instituto de Ciencias de la Atmósfera y Cambio Climático. Universidad Nacional Autónoma de México. http://grupo-ioa.atmosfera.unam.mx/, accessed: 2025-03-11
  10. Hagens, N. (2020). Economics for the future–beyond the superorganism. Ecological Economics, 169, 106520. https://doi.org/10.1016/j.ecolecon.2019.106520
  11. Hong, Y.-Y., Rioflorido, C. L. P. P., Zhang, W. (2024). Hybrid deep learning and quantum-inspired neural network for day-ahead spatiotemporal wind speed forecasting. Expert Systems with Applications, 241, 122645. https://doi.org/10.1016/j.eswa.2023.122645
  12. Hu, W., Yang, Q., Chen, H.-P., Yuan, Z., Li, C., Shao, S., Zhang, J. (2021). New hybrid approach for short-term wind speed predictions based on preprocessing algorithm and optimization theory. Renewable Energy, 179, 2174–2186. https://doi.org/10.1016/j.renene.2021.08.044
  13. Hyndman, R. J., Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R. Journal of Statistical Software, 27(3), 1–22. https://doi.org/10.18637/jss.v027.i03
  14. Iaousse, M., Jouilil, Y., Bouincha, M., & Mentagui, D. (2023). A comparative simulation study of classical and machine learning techniques for forecasting time series data. iJOE, 19(08), 57. https://doi.org/10.3991/ijoe.v19i08.39853
  15. Instituto de Ciencias de la Atmósfera y Cambio Climático (ICAyCC). Universidad Nacional Autónoma de México, https://www.atmosfera.unam.mx/, accessed: 2025-03-11
  16. Jacondino, W. D., DaSilva Nascimento, A. L., Calvetti, L., Fisch, G., Au gustus Assis Beneti, C., Da Paz, S. R. (2021). Hourly day-ahead wind power forecasting at two wind farms in northeast Brazil using wrf model. Energy, 230, 120841. https://doi.org/10.1016/j.energy.2021.120841
  17. Jurado de Larios, O. (2017). Sensibilidad del modelo wrf ante condiciones iniciales y de frontera: Un estudio de caso en el Valle de México [Ph.D. thesis]. Universidad Nacional Autónoma de México, Ciudad de México, México
  18. Kontopoulou, V. I., Panagopoulos, A. D., Kakkos, I., & Matsopoulos, G. K. (2023). A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks. Future Internet, 15(8), 255. https://doi.org/10.3390/fi15080255
  19. Lawal, A., Rehman, S., Alhems, L. M., Alam, M.M. (2021). Wind speed prediction using hybrid 1D CNN and BLSTM network, IEEE Access, 9 156672–156679. https://doi.org/10.1109/ACCESS.2021.3129883
  20. Li, D., Jiang, F., Chen, M., Qian, T. (2022). Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks. Energy, 238, 121981. https://doi.org/10.1016/j. energy.2021.121981
  21. Liu, M., Ding, L., Bai, Y. (2021). Application of a hybrid model based on empirical mode decomposition, novel recurrent neural networks, and the ARIMA to wind speed prediction. Energy Conversion and Management, 233, 113917. https://doi.org/10.1016/j.enconman.2021.113917
  22. Liu, W., Bai, Y., Yue, X., Wang, R., Song, Q. (2024). A wind speed forcasting model based on rime optimization based vmd and multi-headed self-attention-lstm. Energy, 294, 130726. https://doi.org/10.1016/j.energy .2024.130726
  23. Liu, X., Li, Z., Shen, Y. (2024). Study on downscaling correction of near-surface wind speed grid forecasts in complex terrain. Atmosphere, 15(9), 1090. https://doi.org/10.3390/atmos15091090
  24. Liu, X., Lin, Z., Feng. Z. (2021). Short-term offshore wind speed forecast by seasonal ARIMA: a comparison against GRU and LSTM. Energy, 227, 120492. https://doi.org/10.1016/j.energy.2021.120492
  25. Liu, X., Zhang, L., Wang, J., Zhou, Y., Gan, W. (2023). A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data. Renewable Energy, 211, 948–963. https://doi.org/10.1016/j.renene.2023.05.006
  26. Liu, Z., Jiang, P., Zhang, L., Niu, X. (2020). A combined forecasting model for time series: Application to short-term wind speed forecasting. Applied Energy, 259, 114137. https://doi.org/10.1016/j.apenergy.2019.11 4137
  27. López-Espinoza, E. D., Zavala-Hidalgo, J., Mahmood, R., Gómez-Ramos, O. (2020). Assessing the impact of land use and land cover data representation on weather forecast quality: A case study in central México. Atmosphere, 11(11), 1242. https://doi.org/10.3390/atmos11111242
  28. Lopez-Villalobos, C. A., Rodriguez-Hernandez, O., Campos-Amezcua, R., Hernandez-Cruz, G., Jaramillo, O. A., Mendoza, J. L. (2018). Wind turbulence intensity at La Ventosa, Mexico: a comparative study with the IEC61400 standards. Energies, 11(11), 3007. https://doi.org/10.3390/en11113007
  29. Makridakis, S. (1989). Why combining works? International Journal of Forecasting, 5(4), 601–603
  30. Makridakis, S., Wheelwright, S. C., Hyndman, R. J. (2008). Forecasting Methods and Applications, John Wiley & Sons
  31. Mi, L., Shen, L., Han, Y., Cai, C., Zhou, P., Li, K. (2023). Wind field simulation using wrf model in complex terrain: A sensitivity study with orthogonal design. Energy, 285, 129411. https://doi.org/10.1016/j.energy .2023.129411
  32. Moreno, S. R., Mariani, V. C., Dos Santos Coelho, L. (2021). Hybrid multi-stage decomposition with parametric model applied to wind speed forecasting in Brazilian northeast. Renewable Energy, 164, 1508–1526. https://doi.org/10.1016/j.renene.2020.10.126
  33. Moreno, S. R., Seman, L. O., Stefenon, S. F., Dos Santos Coelho, L., Mariani, V. C. (2024). Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition. Energy, 292, 130493. https://doi.org/10.1016/j.energy.2024.130493
  34. Myers, T. A., Van Ormer, A., Turner, D. D., Wilczak, J. M., Bianco, L., Adler, B. (2024). Evaluation of hub-height wind forecasts over the New York Bight. Wind Energy, 27(10), 1063–1073. https://doi.org/10.1002/we.2936
  35. Rivera-Martínez, S. (2018). Análisis del uso de suelo y vegetación en México entre 1968 y 2011 para su uso en un modelo de pronóstico meteorológico [Ph.D. Thesis], Universidad Nacional Autónoma de México, Ciudad de México, México
  36. Romero-Centeno, R., Zavala-Hidalgo, J., Gallegos, A., O’Brien, J. J. (2003). Isthmus 40 of Tehuantepec wind climatology and ENSO signal. Journal of Climate, 16(15), 2628–2639. https://doi.org/10.1175/1520-0442(2003)016<2628:IOTWCA>2.0.CO;2
  37. Team, R. C. (2025). R: A language and environment for statistical computing. https://www.r-project.org/
  38. Thu, N. T. H., Bao, P. Q., Van, P. N. (2023). A hybrid model of decomposition, extended Kalman filter and autoregressive-long short-term memory network for hourly day ahead wind speed forecasting. J. Appl. Sci. Eng, 27, 3063 3071. https://doi.org/10.6180/jase.202409_27(9).0004
  39. Tian, Z., Wang, G., Ren, Y. (2020). Short-term wind speed forecasting based on autoregressive moving average with echo state network compensation. Wind Engineering, 44(2), 152–167. https://doi.org/10.1177/0309524X19849867
  40. Tsai, C.-C., Hong, J.-S., Chang, P.-L., Chen, Y.-R., Su, Y.-J., Li, C.-H. (2021). Application of bias correction to improve wrf ensemble wind speed forecast. Atmosphere, 12(12), 1688. https://doi.org/10.3390/atmos12121688
  41. Tyass, I., Khalili, T., Mohamed, R., Abdelouahed, B., Raihani, A., Mansouri, K. (2023). Wind speed prediction based on statistical and deep learning models. International Journal of Renewable Energy Development, 12(2), 288. https://doi.org/10.14710/ijred.2023.48672
  42. Secretaría de Energía (SENER) (2024). Informe pormenorizado sobre el desempeño y las tendencias de la industria eléctrica nacional 2023. Gobierno de México
  43. Wang, H., Han, S., Liu, Y., Yan, J., Li, L. (2019). Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system. Applied Energy, 237, 1–10. https://doi.org/10.1016/j.apenergy.2018.12.076
  44. Wang, L., Li, X., Bai, Y. (2018). Short-term wind speed prediction using an extreme learning machine model with error correction. Energy Conversion and Management, 162, 239–250. https://doi.org/10.1016/j.enconman.2018.02.015
  45. Wang, S., Wang, J., Lu, H., Zhao, W. (2021). A novel combined model for wind speed prediction–combination of linear model, shallow neural networks, and deep learning approaches. Energy, 234, 121275. https://doi.org/10.1016/j.energy.2021.121275
  46. Xu, W., Liu, P., Cheng, L., Zhou, Y., Xia, Q., Gong, Y., Liu, Y. (2021). Multi-step wind speed prediction by combining a wrf simulation and an error correction strategy. Renewable Energy, 163, 772–782. https://doi.org/10.1016/j.renene.2020.09.032
  47. Yang, J., Sengupta, M., Xie, Y., Shin, H. H. (2023). Developing a 20-year high resolution wind data set for Puerto Rico. Energy, 285, 129439. https://doi.org/10.1016/j.energy.2023.129439
  48. Yang, X., Dai, K., Zhu, Y. (2023). Calibration of gridded wind speed forecasts based on deep learning. Journal of Meteorological Research, 37(6), 757–774. https://doi.org/10.1007/s13351-023-3001-1
  49. Zhang, D., Hu, G., Song, J., Gao, H., Ren, H., Chen, W. (2024). A novel spatiotemporal wind speed forecasting method based on the microscale meteorological model and a hybrid deep learning model. Energy, 288, 129823. https://doi.org/10.1016/j.energy.2023.129823
  50. Zhang, Y., Pan, G., Chen, B., Han, J., Zhao, Y., Zhang, C. (2020). Short-term wind speed prediction model based on ga-ann improved by vmd. Renewable energy, 156, 1373–1388. https://doi.org/10.1016/j.renene.2019.12.047
  51. Zhang, Y.-M., Wang, H. (2023). Multi-head attention-based probabilistic CNN-BiLSTM for day-ahead wind speed forecasting. Energy, 278, 127865. https://doi.org/10.1016/j.energy.2023.127865
  52. Zhao, F. (2025). Global Wind Report | GWEC. Global Wind Energy Council
  53. Zhao, J., Guo, Y., Lin, Y., Zhao, Z., Guo, Z. (2024). A novel dynamic ensemble of numerical weather prediction for multi-step wind speed forecasting with deep reinforcement learning and error sequence modelling. Energy, 131787. https://doi.org/10.1016/j.energy.2024.131787
  54. Zhao, J., Guo, Z., Guo, Y., Lin, W., Zhu, W. (2021). A self-organizing forecast of day ahead wind speed: Selective ensemble strategy based on numerical weather predictions. Energy, 218, 119509. https://doi.org/10.101 6/j.energy.2020.119509

Last update:

No citation recorded.

Last update: 2026-01-11 23:38:44

No citation recorded.