skip to main content

View PDF Download fulltext

Facile one-step hydrothermal carbonization of coffee husks into activated hydrochar for efficient methylene blue adsorption: Isotherm and kinetic studies

Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao, Hanh Thong Ward, Ho Chi Minh City 70000, Viet Nam

Received: 15 Oct 2025; Revised: 18 Nov 2025; Accepted: 10 Dec 2025; Available online: 28 Dec 2025; Published: 1 Jan 2026.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2026 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Recycling agricultural waste into high-performance adsorbent materials represents a sustainable approach for environmentally friendly wastewater treatment, reflecting an important strategy for resource valorization. This study presents an accelerated and simplified route for synthesizing activated hydrochar (AHC) from coffee husks, an abundant lignocellulosic residue. The synthesis employs a one-step hydrothermal carbonization (HTC) under mild conditions (130 °C, 2 h) using 1 mol/L KOH as the activating reagent, followed by pyrolysis. By integrating carbonization and chemical activation into a single HTC stage, the process eliminates the conventional preliminary hydrochar-forming step. It thereby achieves substantial reductions in reaction time and energy input compared with conventional two-stage HTC methods. The resulting AHC exhibits a highly developed microporous architecture, with a BET surface area of 1022.34 m²/g and a surface functionality density of 1.803 mmol/g, both of which contribute to enhanced adsorption performance. Methylene blue adsorption experiments reveal a maximum experimental capacity of 477.43 mg/g, in agreement with the Langmuir monolayer model (Qm = 499.48 mg/g). Kinetic evaluation demonstrates excellent conformity with the pseudo-second-order rate law (R² = 0.9999), indicating rapid and surface-controlled adsorption. The material also retains stable adsorption efficiency over five consecutive regeneration cycles, confirming its robustness and reusability. Collectively, these findings demonstrate that coffee husks constitute a promising precursor for developing efficient adsorbents through a simple, accessible, and energy-efficient one-step HTC strategy. This work provides a practical and sustainable pathway for the valorization of agricultural residues while addressing critical challenges associated with the scalable remediation of dye-contaminated aqueous systems.

Keywords: Hydrothermal carbonization; Activated Hydrochar; Coffee husk; Adsorption kinetics

Article Metrics:

  1. Akbari, A., Peighambardoust, S. J. & Kazemian, H. (2025). Comparative study on the impact of physicochemical characteristics of the activated carbons derived from biochar/hydrochar on the adsorption performances of article. Environ Res. 270 121022. https://doi.org/10.1016/j.envres.2025.121022
  2. Bielecki, M. & Zubkova, V. (2023). Analysis of Interactions Occurring during the Pyrolysis of Lignocellulosic Biomass of article. Molecules. 28 (2), 506. https://doi.org/10.3390/molecules28020506
  3. Cao, J. S., Lin, J. X., Fang, F., Zhang, M. T. & Hu, Z. R. (2014). A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies of article. Bioresour Technol. 163 199-205. http://dx.doi.org/10.1016/j.biortech.2014.04.046
  4. De Benedicto, D. F. C., Ferreira, G. M. D. & Thomasi, S. S. (2024). β-cyclodextrin-functionalized coffee husk biochar for surfactant adsorption of article. Colloids Surf A Physicochem Eng Asp. 701 134921. https://doi.org/10.1016/j.colsurfa.2024.134921
  5. Ge, Q., Li, P., Liu, M., Xiao, G.-M., Xiao, Z.-Q., Mao, J.-W. & Gai, X.-K. (2023). Removal of methylene blue by porous biochar obtained by KOH activation from bamboo biochar of article. Bioresour Bioproc. 10 (1), 51. https://doi.org/10.1186/s40643-023-00671-2
  6. Gil-Muñoz, G., Benguella, S. & Alcañiz-Monge, J. (2025). Impact of hydrothermal treatment and activation atmosphere on the porosity development of activated carbon from date pits of article. Fuel Process Technol. 276 108264. https://doi.org/10.1016/j.fuproc.2025.108264
  7. Gong, M., Xu, F., Liu, P., Xu, Q., Su, Y., Fan, Y. & Li, M. (2025). A review of biomass hydrochar as an adsorbent: Performance, modification, and applications of article. J. Water Process Eng. 71 107314. https://doi.org/10.1016/j.jwpe.2025.107314
  8. Hendronursito, Y., Astuti, W., Sabarman, H. & Santoso, I. (2025). A porous activated carbon derived from banana peel by hydrothermal activation two-step methods of article. Int. J. Renew. Energy Dev. 14 (2), 10. https://doi.org/10.61435/ijred.2025.60847
  9. Hussein, S. A. & Ahmed, M. J. (2026). Batch and fixed-bed adsorption of phosphate and nitrate on char derived by the co-pyrolysis of waste tires and corn cobs of article. Int. J. Renew. Energy Dev. 15 (1), 15. https://doi.org/10.61435/ijred.2026.61629
  10. Illingworth, J. M., Rand, B. & Williams, P. T. (2022). Understanding the mechanism of two-step, pyrolysis-alkali chemical activation of fibrous biomass for the production of activated carbon fibre matting of article. Fuel Process Technol. 235 107348. https://doi.org/10.1016/j.fuproc.2022.107348
  11. Indexbox. (2024). World - Synthetic Organic Coloring Matter And Pigments - Market Analysis, Forecast, Size, Trends and Insights https://www.indexbox.io/blog/organic-pigments-world-market-overview-2024-6/ Accessed Sep 1, 2025
  12. Jain, A., Balasubramanian, R. & Srinivasan, M. P. (2016). Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review of article. Chem Eng J. 283 789-805. http://dx.doi.org/10.1016/j.cej.2015.08.014
  13. Jalilian, M., Bissessur, R., Ahmed, M., Hsiao, A., He, Q. S. & Hu, Y. (2024). A review: Hydrochar as potential adsorbents for wastewater treatment and CO2 adsorption of article. Sci Total Environ. 914 169823. https://doi.org/10.1016/j.scitotenv.2023.169823
  14. Jawad, A. H., Abdulhameed, A. S., Bahrudin, N. N., Hum, N., Surip, S. N., Syed-Hassan, S. S. A., Yousif, E. & Sabar, S. (2021). Microporous activated carbon developed from KOH activated biomass waste: surface mechanistic study of methylene blue dye adsorption of article. Water Sci. Technol. 84 (8), 1858-1872. https://doi.org/10.2166/wst.2021.355
  15. Jerzak, W., Acha, E. & Li, B. (2024). Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis of article. Energies. 17 (20), 5082. https://doi.org/10.3390/en17205082
  16. Khruengsai, S., Pripdeevech, P., Pongnailert, S., Chanlek, N., Thumanu, K., Muangmora, R., Rojviroon, T. & Pongpiachan, S. (2024). Chemical characterization of activated carbon derived from Napier grass, rubber wood, bamboo, and hemp of article. Int. J. Renew. Energy Dev. 13 (6), 10. https://doi.org/10.61435/ijred.2024.60502
  17. Krishna Murthy, T. P., Gowrishankar, B. S., Krishna, R. H., Chandraprabha, M. N. & Mathew, B. B. (2020). Magnetic modification of coffee husk hydrochar for adsorptive removal of methylene blue: Isotherms, kinetics and thermodynamic studies of article. Environ Chem Ecotoxicol. 2 205-212. https://doi.org/10.1016/j.enceco.2020.10.002
  18. Liu, P., Sun, S., Huang, S., Wu, Y., Li, X., Wei, X. & Wu, S. (2024). KOH activation mechanism in the preparation of Brewer’s spent grain-based activated carbons of article. Catalysts. 14 (11), 814. https://doi.org/10.3390/catal14110814
  19. Luo, Y., Lan, Y., Liang, S., Yu, S., Xue, M., Yin, Z., Shen, F.-F., Li, X., Hong, Z., Yan, M., Xie, C. & Gao, B. (2024). Rice husk hydrochar prepared by hydrochloric acid assisted hydrothermal carbonization for levofloxacin removal in bioretention columns of article. Bioresour Technol. 393 130105. https://doi.org/10.1016/j.biortech.2023.130105
  20. Medhat, A., El-Maghrabi, H. H., Abdelghany, A., Abdel Menem, N. M., Raynaud, P., Moustafa, Y. M., Elsayed, M. A. & Nada, A. A. (2021). Efficiently activated carbons from corn cob for methylene blue adsorption of article. Appl Surf Sci Adv. 3 100037. https://doi.org/10.1016/j.apsadv.2020.100037
  21. Nandi, R., Jha, M. K., Guchhait, S. K., Sutradhar, D. & Yadav, S. (2023). Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 Selectivity of article. ACS Omega. 8 (5), 4802-4812. https://doi.org/10.1021/acsomega.2c06955
  22. Pathania, D., Sharma, S. & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast of article. Arab J Chem. 10 S1445-S1451. https://doi.org/10.1016/j.arabjc.2013.04.021
  23. Polaert, I., Estel, L., Huyghe, R. & Thomas, M. (2010). Adsorbents regeneration under microwave irradiation for dehydration and volatile organic compounds gas treatment of article. Chem Eng J. 162 (3), 941-948. https://doi.org/10.1016/j.cej.2010.06.047
  24. Rocha, L. S., Pereira, D., Sousa, É., Otero, M., Esteves, V. I. & Calisto, V. (2020). Recent advances on the development and application of magnetic activated carbon and char for the removal of pharmaceutical compounds from waters: A review of article. Sci Total Environ. 718 137272. https://doi.org/10.1016/j.scitotenv.2020.137272
  25. Rubinstein, A. (2024). USDA Attache: Vietnam’s 2024 Coffee Crop Revised Up to 30.1 Million Bags; https://www.stonex.com/en/market-intelligence/coffee/202412091837/usda-attache-vietnams-2024-coffee-crop-revised-up-to-301-millio/ Accessed Dec 9, 2024
  26. Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., Febriyanto, P., Ginting, S. B. & Darmansyah, D. (2025). Synthesis of rubber seed shell-derived porous activated carbons for promising supercapacitor application of article. Int. J. Renew. Energy Dev. 14 (2), 11. https://doi.org/10.61435/ijred.2025.60869
  27. Rustamaji, H., Prakoso, T., Rizkiana, J., Devianto, H., Widiatmoko, P. & Guan, G. (2022). Synthesis and Characterization of Hydrochar and Bio-oil from Hydrothermal Carbonization of Sargassum sp. using Choline Chloride (ChCl) Catalyst of article. Int. J. Renew. Energy Dev. 11 (2), 10. https://doi.org/10.14710/ijred.2022.42595
  28. Saha, N., Volpe, M., Fiori, L., Volpe, R., Messineo, A. & Reza, M. T. (2020). Cationic dye adsorption on hydrochars of winery and citrus juice industries residues: Performance, mechanism, and thermodynamics of article. Energies. 13 (18), 4686. https://doi.org/10.3390/en13184686
  29. Selvam, S. M., Janakiraman, T. & Paramasivan, B. (2021). Characterization of engineered corn cob biochar produced in allothermal pyrolysis reactor of article. Mater Today Proc. 47 312-317. https://doi.org/10.1016/j.matpr.2021.04.469
  30. Selvaraj, P. S., Ettiyagounder, P., Sabarish, K., Periasamy, K., Rengasamy, B., Veeraswamy, D., Karchiyappan, T. & Kathirvel, S. (2025). Hydrothermal carbonization approach for transforming biomass waste to value added hydrochar and its applications in water remediation of article. Desalin Water Treat. 322 101199. https://doi.org/10.1016/j.dwt.2025.101199
  31. Service, U. F. A. (2025). Usda biannual report lowers its estimate of world production for 2024/25 to 174.4 million, global output at 178.7 million in 2025/26. https://www.comunicaffe.com/usda-biannual-report-cuts-estimate-of-world-production-for-2024-25-to-174-4-million/ Accessed June 26, 2025
  32. Tamilselvan, K., Sundarajan, S., Ramakrishna, S., Amirul, A.-a. A. & Vigneswari, S. (2024). Sustainable valorisation of coffee husk into value added product in the context of circular bioeconomy: Exploring potential biomass-based value webs of article. Food and Bioproducts Processing. 145 187-202. https://doi.org/10.1016/j.fbp.2024.03.008
  33. Tran, T. H., Le, A. H., Pham, T. H., Duong, L. D., Nguyen, X. C., Nadda, A. K., Chang, S. W., Chung, W., Nguyen, D. D. & Nguyen, D. T. (2022). A sustainable, low-cost carbonaceous hydrochar adsorbent for methylene blue adsorption derived from corncobs of article. Environ Res. 113178. https://doi.org/10.1016/j.envres.2022.113178
  34. Tran, T. H., Le, A. H., Pham, T. H., Nguyen, D. T., Chang, S. W., Chung, W. J. & Nguyen, D. D. (2020). Adsorption isotherms and kinetic modeling of methylene blue dye onto a carbonaceous hydrochar adsorbent derived from coffee husk waste of article. Sci Total Environ. 725 138325. https://doi.org/10.1016/j.scitotenv.2020.138325
  35. Tran, T. H., Le, H. H., Pham, T. H., Nguyen, D. T., La, D. D., Chang, S. W., Lee, S. M., Chung, W. J. & Nguyen, D. D. (2021). Comparative study on methylene blue adsorption behavior of coffee husk-derived activated carbon materials prepared using hydrothermal and soaking methods of article. J Environ Chem Eng. 9 (4), 105362. https://doi.org/10.1016/j.jece.2021.105362
  36. Tran, T. H., Nguyen, T. V., Pham, H. T., Nguyen, D. T. & Phan, D. T. (2017). Synthesis of novel magnetic adsorbents from coffee husks by hydrothermal carbonization of article. Vietnam Journal of Science and Technology. 55 https://doi.org/10.15625/2525-2518/55/4/9016
  37. Tran, T. H., Nguyen, T. V., Phan, T. Q. P., Pham, H. T., Nguyen, D. T. & Phan, D. T. (2016). Optimizing the process of transforming coffee husks into biochar by means of hydrothermal carbonization of article. Journal of Science and Technology 54 (4B), 138-145. https://doi.org/10.15625/2525-2518/54/4B/12034
  38. Wei, T., Wei, X., Gao, Y. & Li, H. (2015). Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors of article. Electrochim Acta. 169 186-194. http://dx.doi.org/10.1016/j.electacta.2015.04.082
  39. Yang, Y., Foong, S. Y., He, Y., Liew, R. K., Ma, N. L., Yek, P. N. Y., Ge, S., Naushad, M. & Lam, S. S. (2024). Upcycling crab shell waste into biochar for treatment of palm oil mill effluent via microwave pyrolysis and activation of article. Environ Res. 248 118282. https://doi.org/10.1016/j.envres.2024.118282

Last update:

No citation recorded.

Last update: 2026-01-12 04:00:49

No citation recorded.