skip to main content

Optimizing aeration rates via bio-methane potential test for enhanced biodrying efficiency of refuse-derived fuel-3

1The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand

2Center of Excellence on Energy Technology and Environment (CEE), Ministry of Higher Education Science, Research and Innovation (MHESI), Bangkok, 10140, Thailand

3Environmental Health Programme, School of Health Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand

4 Department Mechanical and Aerospace Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand

View all affiliations
Received: 26 May 2024; Revised: 6 Jul 2024; Accepted: 5 Aug 2024; Available online: 12 Aug 2024; Published: 1 Sep 2024.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Aeration forms a critical part of the biodrying of refuse-derived fuel-3 (RDF-3) and significantly affects the fuel’s energy potential. Understanding the organic content (OC) of RDF-3 is crucial for determining the optimal aeration strategy. In this study, we conducted a bio-methane potential (BMP) test to estimate the OC by observing the conversion of organic matter into methane (CH₄) and carbon dioxide (CO₂). The observation of BMP was conducted using anaerobic digestion approach where substrate and inoculum are important parameters considered for the success of this test. Various ratios substrate-to-inoculum (S/I) were explored to assess their impact on biogas production, our research involved testing four S/I ratios (0.25, 0.5, 1.0, and 1.5) focusing on identifying the optimal aeration strategy. Based on stoichiometric calculations, the sample’s biogas yield per gram volatile solid indicates RDF-3’s OC is 1.5%. This OC value played a role in establishing the appropriate aeration rate (AR) for the biodrying process, which was determined to be 0.6 m³/kg.day, indicating the action of effective microbial degradation processes. Ensuring the correct AR is vital for maximizing the energy potential of RDF-3. Implementing optimized aeration rates based on the BMP test in waste management practices can significantly improve RDF-3 biodrying efficiency. This approach enhances RDF quality, reduces moisture, increases calorific value, and minimizes greenhouse gas emissions, leading to more sustainable and efficient waste-to-energy conversion.
Fulltext View|Download
Keywords: Waste-to-Energy Conversion; Refuse-Derived Fuel Enhancement; Energy Recovery Optimization; Waste Treatment Technology; Waste Valorization
Funding: The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut’s University of Technology Thonburi (KMUTT), and the Center of Excellence on Energy Technology and Environment (CEE)

Article Metrics:

  1. Ahire, P. D., Upadhyay, A., Talwar, P., Khatri, H., Singh, R., Lindenberger, C., Pareek, N., & Vivekanand, V. (2024). Tool development for estimation of biomethane potential of different food waste for a sustainable bioeconomy. Biomass and Bioenergy, 182, 107107; https://doi.org/10.1016/j.biombioe.2024.107107
  2. Ahmed, G. M., Galal, M. M., Ali, S. I., Moustafa, M. H., Abdel-Haleim, H. S. (2024) Enhancing biogas production through anaerobic co-digestion of thickened sewage sludge and rice straw. Ain Shams Engineering Journal, 15,102726; https://doi.org/10.1016/j.asej.2024.102726
  3. Ali, S., Dar, M. A., Liaqat, F., Sethupathy, S., Rani, A., Khan, M. I., Rehan, M., & Zhu, D. (2024). Optimization of biomethane production from lignocellulosic biomass by a developed microbial consortium. Process Safety and Environmental Protection, 184, 1106–1118; https://doi.org/10.1016/j.psep.2024.02.037
  4. Alonso-Riaño, P., Illera, A.E., Benito-Román, O., Melgosa, R., Bermejo-López, A., Beltrán, S., Sanz, M.T. (2024) Degradation kinetics of sugars (glucose and xylose), amino acids (proline and aspartic acid) and their binary mixtures in subcritical water: Effect of Maillard reaction. Food Chemistry, 442. 138421; https://doi.org/10.1016/j.foodchem.2024.138421
  5. Asato, C. M., Gonzalez-Estrella, J., Jerke, A. C., Bang, S. S., Stone, J. J., & Gilcrease, P. C. (2016). Batch anaerobic digestion of synthetic military base food waste and cardboard mixtures. Bioresource Technology, 216, 894–903; https://doi.org/10.1016/j.biortech.2016.06.033
  6. Asian Development Bank. (2020). Waste to Energy in the Age of the Circular Economy: https://doi.org/10.22617/TIM200330-2
  7. Ball, D.W. (2012) Beginning Chemistry. Book Chapter 5: Sthoiciometry and the mole v.1.0. Available at: https://2012books.lardbucket.org/pdfs/beginning-chemistry.pdf
  8. Bernat, K., Kulikowska, D., Wojnowska-Baryła, I., Kaminska, A. (2022) Can the biological stage of a mechanical–biological treatment plant that is designed for mixed municipal solid waste be successfully utilized for effective composting of selectively collected biowaste. Waste Management, 149, 291-301; https://doi.org/10.1016/j.wasman.2022.06.025
  9. Bhatsada, A., Patumsawad, S., Itsarathorn, T., Towprayoon, S., Chiemchaisri, C., Phongphiphat, A., & Wangyao, K. (2022). Improvement of energy recovery potential of wet-refuse-derived fuel through bio-drying process. Journal of Material Cycles and Waste Management. https://doi.org/10.1007/s10163-022-01545-z
  10. Bożym, M., & Siemiątkowski, G. (2018). Characterization of composted sewage sludge during the maturation process: a pilot scale study. Environmental Science and Pollution Research, 25(34), 34332–34342; https://doi.org/10.1007/s11356-018-3335-x
  11. Bożym, M., & Siemiątkowski, G. (2019). Assessment of Composition Changes, Stability Degree and the Potential of Biogas Formation of Sewage Sludge Composts During Maturation Process. Waste and Biomass Valorization, 11(8), 4081–4091; https://doi.org/10.1007/s12649-019-00736-4
  12. Clagnan, E., Cucina, M., Sajgule, R. V., Nisi, P. D., Adani, F. (2023) Microbial community acclimatization enhances bioplastics biodegradation and biogas production under thermophilic anaerobic digestion. Bioresource Technology, 390, 129889; https://doi.org/10.1016/j.biortech.2023.129889
  13. de Guardia, A., Petiot, C., & Rogeau, D. (2008). Influence of aeration rate and biodegradability fractionation on composting kinetics. Waste Management, 28(1), 73–84; https://doi.org/10.1016/j.wasman.2006.10.019
  14. Elbeshbishy, E., Nakhla, G., & Hafez, H. (2012). Biochemical methane potential (BMP) of food waste and primary sludge: Influence of inoculum pre-incubation and inoculum source. Bioresource Technology, 110, 18–25; https://doi.org/10.1016/j.biortech.2012.01.025
  15. Fernandes, D. J., Ferreira, A. F., & Fernandes, E. C. (2023). Biogas and biomethane production potential via anaerobic digestion of manure: A case study of Portugal. Renewable and Sustainable Energy Reviews, 188, 113846; https://doi.org/10.1016/j.rser.2023.113846
  16. Gaur, R. Z., & Suthar, S. (2017). Anaerobic digestion of activated sludge, anaerobic granular sludge and cow dung with food waste for enhanced methane production. Journal of Cleaner Production, 164, 557–566; https://doi.org/10.1016/j.jclepro.2017.06.201
  17. Induchoodan, T.G., Haq, I., Kalamdhad, A.S. (2022) 14 - Factors affecting anaerobic digestion for biogas production: a review. Advanced Organic Waste Management, 223–233; https://doi.org/10.1016/B978-0-323-85792-5.00020-4
  18. Itsarathorn, T., Towprayoon, S., Chiemchaisri, C., Patumsawad, S., Phongphiphat, A., Bhatsada, A., & Wangyao, K. (2023). The effect of aeration rate and feedstock density on biodrying performance for wet refuse-derived fuel quality improvement. International Journal of Renewable Energy Development, 12(6), 1091–1103; https://doi.org/10.14710/ijred.2023.56035
  19. Itsarathorn, T., Towprayoon, S., Chiemchaisri, C., Patumsawad, S., Wangyao, K., & Phongphipat, A. (2022). The Situation of RDF Utilization in the Cement Industry in Thailand. 2022 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE), 1–7; https://doi.org/10.1109/ICUE55325.2022.10113510
  20. Izadi, P., & Andalib, M. (2023). Anaerobic Zone Functionality, Design and Configurations for a Sustainable EBPR process: A Critical Review. Science of The Total Environment, 870, 162018; https://doi.org/10.1016/j.scitotenv.2023.162018
  21. Kang, S., Woo, J., Jeon, E. (2020) Ammonia Emission Characteristics and Emission Factor of Municipal Solid Waste Incineration Plant. Sustainability, 12(18), 7309; https://doi.org/10.3390/su12187309
  22. Keogh, N., Corr, D., & Monaghan, R. F. D. (2024). An environmental and economic assessment for biomethane injection and natural gas heavy goods vehicles. Applied Energy, 360, 122800; https://doi.org/10.1016/j.apenergy.2024.122800
  23. Kerdsuwan, S., Meenaroch, P., & Chalermcharoenrat, T. (2016). The Novel Design and Manufacturing Technology of Densified RDF from Reclaimed Landfill without a Mixing Binding Agent Using a Hydraulic Hot Pressing Machine. MATEC Web of Conferences, 70, 11003; https://doi.org/10.1051/matecconf/20167011003
  24. Ko, J.H., Xu, Q., Jang, Y. (2015) Emission and Control of Hydrogen Sulfide at Landfills: A Review. Critical Reviews in Environmental Science and Technology, 45, 2043–2083; https://doi.org/10.1080/10643389.2015.1010427
  25. Koch, K., Lippert, T., & Drewes, J. E. (2017). The role of inoculum’s origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresource Technology, 243, 457–463; https://doi.org/10.1016/j.biortech.2017.06.142
  26. Li, J., Ju, T., Lin, L., Meng, F., Han, S., Meng, Y., Du, Y., Song, M., Lan, T., & Jiang, J. (2022). Biodrying with the hot-air aeration system for kitchen food waste. Journal of Environmental Management, 319; https://doi.org/10.1016/j.jenvman.2022.115656
  27. Malinowski, M., & Wolny-Koładka, K. (2017). Microbiological and Energetic Assessment of the Effects of the Biodrying of Fuel Produced from Waste. Ecological Chemistry and Engineering S, 24(4); 551–564. https://doi.org/10.1515/eces-2017-0036
  28. Mangas, R., González, M. R., Martín, P., & Rodríguez-Nogales, J. M. (2023). Impact of glucose oxidase treatment in high sugar and pH musts on volatile composition of white wines. LWT, 184, 114975; https://doi.org/10.1016/j.lwt.2023.114975
  29. Manthos, G., Dareioti, M., Zagklis, D., & Kornaros, M. (2023). Using biochemical methane potential results for the economic optimization of continuous anaerobic digestion systems: the effect of substrates’ synergy. Renewable Energy, 211, 296–306; https://doi.org/10.1016/j.renene.2023.04.125
  30. Mekonen, E. A., Mekonnen, Y. T., & Fatoba, S. O. (2023). Thermodynamic prediction of biogas production and combustion: The spontaneity and energy conversion efficiency from photosynthesis to combustion. Scientific African, 21; https://doi.org/10.1016/j.sciaf.2023.e01776
  31. Nilsson Påledal, S., Hellman, E., & Moestedt, J. (2018). The effect of temperature, storage time and collection method on biomethane potential of source separated household food waste. Waste Management, 71, 636–643; https://doi.org/10.1016/j.wasman.2017.05.034
  32. Ngamket, K., Wangyao, K., Patumsawad, S., Chaiwiwatworakul,P., & Towprayoon, S. (2021). Quality improvement of mixed MSW drying using a pilot-scale solar greenhouse biodrying system. Journal of Material Cyscles and Waste Management, 23, 436–448. https://doi.org/10.1007/s10163-020-01152-w
  33. Ohemeng-Ntiamoah, J., & Datta, T. (2019). Perspectives on variabilities in biomethane potential test parameters and outcomes: A review of studies published between 2007 and 2018. Science of The Total Environment, 664, 1052–1062; https://doi.org/10.1016/j.scitotenv.2019.02.088
  34. Papa, G., Cucina, M., Echchouki, K., De Nisi, P., & Adani, F. (2023). Anaerobic digestion of organic waste allows recovering energy and enhancing the subsequent bioplastic degradation in soil. Resources, Conservation and Recycling, 188, 106694; https://doi.org/10.1016/j.resconrec.2022.106694
  35. Park, J. R., & Lee, D. H. (2022). Effect of aeration strategy on moisture removal in bio-drying process with auto-controlled aeration system. Drying Technology, 40(10), 2006–2020. https://doi.org/10.1080/07373937.2021.1912080
  36. Payomthip, P., Towprayoon, S., Chiemchaisri, C., Patumsawad, S., & Wangyao, K. (2020). Effect of Intermittent Negative Ventilation in Biodrying Process for Treating Pre-Shredded Waste. IOP Conference Series: Earth and Environmental Science, 581(1), 12047; https://doi.org/10.1088/1755-1315/581/1/012047
  37. Payomthip, P., Towprayoon, S., Chiemchaisri, C., Patumsawad, S., & Wangyao, K. (2022a). Optimization of Aeration for Accelerating Municipal Solid Waste Biodrying. International Journal of Renewable Energy Development, 11(3), 878–888; https://doi.org/10.14710/ijred.2022.45143
  38. Payomthip, P., Towprayoon, S., Chiemchaisri, C., Patumsawad, S., & Wangyao, K. (2022b). Optimization of Aeration for Accelerating Municipal Solid Waste Biodrying. International Journal of Renewable Energy Development, 11(3), 878–888. https://doi.org/10.14710/ijred.2022.45143
  39. Reichert, P. and Schuwirth, N. (2010) A generic framework for deriving process stoichiometry in environmental models. Environmental Modelling & Software 25, 1241–1251; https://doi: 10.1016/j.envsoft.2010.03.002
  40. Ren, Y., Wang, C., He, Z., Li, Y., Qin, Y., Li, Y. (2023) Stoichiometry and energy assessment comparison between thermophilic and mesophilic high-solid anaerobic co-digestion of lipids and food waste. Chemical Engineering Journal 459, 141551; https://doi.org/10.1016/j.cej.2023.141551
  41. Romero-Güiza, M.S., Vila, J., Mata-Alvarez, J., Chimenos, J.M., Astals, S. (2016) The role of additives on anaerobic digestion: A review. Renewable and Sustainable Energy Reviews, 58, 1486-1499; http://dx.doi.org/10.1016/j.rser.2015.12.094
  42. Septiariva, I. Y., Suryawan, I. W. K., & Sari, M. M. (2022). Vegetable Waste Biodrying Treatment for Energy Recovery as Refuse Derived Fuel Potential. Jurnal Teknik Kimia Dan Lingkungan, 6(2), 138–146; https://doi.org/10.33795/jtkl.v6i2.316
  43. Shitophyta, L.M., Budhiarti, G.I., Nugroho, Y.E., Fajariyanto, F. (2020). Biogas Production from Corn Stover by Solid-State Anaerobic Co-digestion of Food Waste. Jurnal Teknik Kimia dan Lingkungan, 4(1), 44–52
  44. Sidełko, R., Siebielska, I., Janowska, B., Skubała, A. (2017) Assessment of biological stability of organic waste processed under aerobic conditions. Journal of Cleaner Production, 164, 1563-1570; https://doi.org/10.1016/j.jclepro.2017.07.035
  45. Ulhasanah, N., Sarwono, A., Yosafaat, M., Filippi, D., Sari, M. M., & Suryawan, I. W. K. (2021). Coconut leaf waste processing with biodrying process as raw material for biomass pelltes in waste to energy. Astonjadro, 11(1), 167; https://doi.org/10.32832/astonjadro.v11i1.5853
  46. Van Lier, J.B., Mahmoud, N., Zeeman, G. (2008). Biological Wastewater Treatment: Principles Modeling and Design. IWA Publishing, London. ISBN: 9781843391883. Available at: https://ocw.tudelft.nl/wp-content/uploads/Chapter_16_-_Anaerobic_Wastewater_Treatment.pdf
  47. Voegeli, Y., Lohri, C.R., Gallardo, A., Diener, S., & Zurbrugg, C. (2014) Anaerobic digestion of biowaste in developing countries: practical information and case studies”. Swiss Federal Institute of Aquatic Science and Technology (Eawag-Sandec), Switzerland
  48. Wang, B., Strömberg, S., Li, C., Nges, I. A., Nistor, M., Deng, L., & Liu, J. (2015). Effects of substrate concentration on methane potential and degradation kinetics in batch anaerobic digestion. Bioresource Technology, 194, 240–246; https://doi.org/10.1016/j.biortech.2015.07.034
  49. Wang, Z., Hu, Y., Wang, S., Wu, G., Zan, X. (2023) A critical review on dry anaerobic digestion of organic waste: Characteristics, operational conditions, and improvement strategies. Renewable and Sustainable Energy Reviews 176, 113208; https://doi.org/10.1016/j.rser.2023.113208
  50. Xie, Y., Chen, N., Liang, Z., Huang, Y., & Shim, H. (2023) Biodegradation of dibutyl phthalate and diethyl phthalate by indigenous isolate Bacillus sp. MY156: Characterization, stoichiometry, enzyme activity, and physiological response to cell surface. Journal of Water Process Engineering 53, 103862; https://doi.org/10.1016/j.jwpe.2023.103862
  51. Yan, Y., Zhang, L., Feng, L., Sun, D., & Dang, Y. (2018). Comparison of varying operating parameters on heavy metals ecological risk during anaerobic co-digestion of chicken manure and corn stover. Bioresource Technology, 247, 660–668; https://doi.org/10.1016/j.biortech.2017.09.146
  52. Yuan, J., Zhang, D., Li, Y., Li, J., Luo, W., Zhang, H., Wang, G., Li, G. (2018) Effects of the aeration pattern, aeration rate, and turning frequency on municipal solid waste biodrying performance. Journal of Environmental Management 215, 416–424. https://doi.org/10.1016/j.jenvman.2018.04.089
  53. Zieri, W., & Ismail, I. (2019). Alternative Fuels from Waste Products in Cement Industry. Handbook of Ecomaterials, 1183–1206. https://doi.org/10.1007/978-3-319-68255-6_142

Last update:

No citation recorded.

Last update: 2024-10-10 13:59:40

No citation recorded.