skip to main content

Superior thermal dissipation through natural convection in a passive cooling system using multidirectional tapered fin heat sinks (MTFHS)

1Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2School of Engineering, Faculty of Innovation & Technology, Taylor's University Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia

Received: 9 Oct 2024; Revised: 17 Jan 2025; Accepted: 20 Mar 2025; Available online: 30 Apr 2025; Published: 1 May 2025.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The increasing prominence of photovoltaic modules as a cornerstone of sustainable energy systems is well-established.  Nevertheless, the deleterious impact of thermal dissipation, often resulting in efficiency losses of 10-15%, remains a significant challenge.  Many researches were exploring new cooling techniques to improve the efficiency of solar panels.  One promising approach is the Multidirectional Tapered Fin Heat Sink (MTFHS).  This innovative design can capture wind from multiple directions, making it more effective outdoors.  This study aims to investigate the MTFHS for photovoltaic module cooling. A comprehensive numerical model was developed using COMSOL software simulations to investigate the thermal behavior of photovoltaic modules equipped with multidirectional tapered fins.  The model was employed to simulate heat transfer under various solar irradiance levels from 400 W/m2 to 1000 W/m2 while maintaining a constant 30 ℃ ambient temperature and 1 m/s wind speed to isolate the impact of solar radiation.  Additionally, the direction of incoming airflow was systematically varied from 0° to 90° in 18° increments to analyze its influence.  The model considered key multidirectional tapered fin design parameters like fin spacing, number of fins, and fin height.  Real-world testing further validated the model's predictions.  The findings demonstrate that multidirectional tapered fins significantly reduce PV module temperature, achieving a remarkable 8.61% reduction compared to the bare and conventional rectangular fins.  The maximum temperature reached with MTFHS was 56.73 ℃.  Furthermore, multidirectional tapered fins consistently outperformed other configurations across various wind orientations, achieving temperature reductions of over 10 %.  These findings highlight the exceptional effectiveness of multidirectional tapered fins in outdoor environments, especially where wind direction is unpredictable.  A correlation analysis revealed excellent agreement (93-96 %) between model and experimental results, further validating the efficacy of the multidirectional tapered fin design.  

Fulltext View|Download
Keywords: Passive Cooling; Thermal Management; Outdoor Conditions; Multidirectional Tapered Fins; Comsol Simulations; Experimental Validation; PV Temperature

Article Metrics:

  1. Abdallah, R., Haddad, T., Zayed, M., Juaidi, A., & Salameh, T. (2024). An evaluation of the use of air cooling to enhance photovoltaic performance. Thermal Science and Engineering Progress, 47, 102341. https://doi.org/https://doi.org/10.1016/j.tsep.2023.102341
  2. Ağbulut, Ü., Gürel, A. E., & Biçen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews, 135, 110114. https://doi.org/https://doi.org/10.1016/j.rser.2020.110114
  3. Aghaei, M., Fairbrother, A., Gok, A., Ahmad, S., Kazim, S., Lobato, K., Oreski, G., Reinders, A., Schmitz, J., Theelen, M., Yilmaz, P., & Kettle, J. (2022). Review of degradation and failure phenomena in photovoltaic modules. Renewable and Sustainable Energy Reviews, 159(February), 112160. https://doi.org/10.1016/j.rser.2022.112160
  4. Ahmad, E. Z., Fazlizan, A., Jarimi, H., Sopian, K., & Ibrahim, A. (2021a). Enhanced heat dissipation of truncated multi-level fin heat sink (MLFHS) in case of natural convection for photovoltaic cooling. Case Studies in Thermal Engineering, 28, 101578. https://doi.org/https://doi.org/10.1016/j.csite.2021.101578
  5. Ahmad, E. Z., Fazlizan, A., Jarimi, H., Sopian, K., & Ibrahim, A. (2021b). Enhanced heat dissipation of truncated multi-level fin heat sink (MLFHS) in case of natural convection for photovoltaic cooling. Case Studies in Thermal Engineering, 28(March), 101578. https://doi.org/10.1016/j.csite.2021.101578
  6. Ahmad, E. Z., Sopian, K., Fazlizan, A., Jarimi, H., & Ibrahim, A. (2022). Outdoor performance evaluation of a novel photovoltaic heat sinks to enhance power conversion efficiency and temperature uniformity. Case Studies in Thermal Engineering, 31, 101811. https://doi.org/https://doi.org/10.1016/j.csite.2022.101811
  7. Ahmed, B., Necaibia, A., Slimani, A., Dabou, R., Ziane, A., & Sahouane, N. (2019). A Demonstrative Overview of Photovoltaic Systems Faults. 2019 1st Global Power, Energy and Communication Conference (GPECOM), 281–285. https://doi.org/10.1109/GPECOM.2019.8778567
  8. Al-Aasam, A. B., Ibrahim, A., Sopian, K., Abdulsahib M, B., & Dayer, M. (2023). Nanofluid-based photovoltaic thermal solar collector with nanoparticle-enhanced phase change material (Nano-PCM) and twisted absorber tubes. Case Studies in Thermal Engineering, 49(January). https://doi.org/10.1016/j.csite.2023.103299
  9. Al-Amri, F., Saeed, F., & Mujeebu, M. A. (2022). Novel dual-function racking structure for passive cooling of solar PV panels –thermal performance analysis. Renewable Energy, 198, 100–113. https://doi.org/https://doi.org/10.1016/j.renene.2022.08.047
  10. Alktranee, M., & Bencs, P. (2023). Experimental comparative study on using different cooling techniques with photovoltaic modules. Journal of Thermal Analysis and Calorimetry, 148(9), 3805–3817. https://doi.org/10.1007/s10973-022-11940-1
  11. Armstrong, S., & Hurley, W. G. (2010). A thermal model for photovoltaic panels under varying atmospheric conditions. Applied Thermal Engineering, 30(11), 1488–1495. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2010.03.012
  12. Arun, M., Barik, D., Sharma, P., Gürel, A. E., Ağbulut, Ü., Medhi, B. J., & Bora, B. J. (2024). Experimental and CFD analysis of dimple tube parabolic trough solar water heater with various nanofluids. Applied Nanoscience, 14(2), 291–337. https://doi.org/10.1007/s13204-023-02977-1
  13. Assadeg, J., Sopian, K., Ibrahim, A., Fudholi, A., Fatima, N., Al-Waeli, A. H. A., & Hamid, A. S. A. (2023). Thermal and Thermo-hydraulic Performance of Finned Double-Pass Solar Air Collector Utilizing Cylindrical Capsules Nano-Enhanced PCM. International Journal of Renewable Energy Research, 13(1), 125–135. https://doi.org/10.20508/ijrer.v13i1.13880.g8668
  14. Baghaei Daemei, A., Khotbehsara, E. M., Nobarani, E. M., & Bahrami, P. (2019). Study on wind aerodynamic and flow characteristics of triangular-shaped tall buildings and CFD simulation in order to assess drag coefficient. Ain Shams Engineering Journal, 10(3), 541–548. https://doi.org/https://doi.org/10.1016/j.asej.2018.08.008
  15. Bassam, A. M., Sopian, K., Ibrahim, A., Al-Aasam, A. B., & Dayer, M. (2023). Experimental analysis of photovoltaic thermal collector (PVT) with nano PCM and micro-fins tube counterclockwise twisted tape nanofluid. Case Studies in Thermal Engineering, 45(November 2022), 102883. https://doi.org/10.1016/j.csite.2023.102883
  16. Bayrak, F., Oztop, H. F., & Selimefendigil, F. (2020). Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management, 212, 112789. https://doi.org/https://doi.org/10.1016/j.enconman.2020.112789
  17. Dey, A., Ahmed, Z. U., & Ramijul Alam, M. (2022). Thermal and exergy analysis of Pin-finned heatsinks for nanofluid cooled high concentrated photovoltaic thermal (HCPV/T) hybrid systems. Energy Conversion and Management: X, 16(November), 100324. https://doi.org/10.1016/j.ecmx.2022.100324
  18. Egab, K., Okab, A., Dywan, H. S., & Oudah, S. K. (2020). Enhancing a solar panel cooling system using an air heat sink with different fin configurations. IOP Conference Series: Materials Science and Engineering, 671(1), 12133. https://doi.org/10.1088/1757-899X/671/1/012133
  19. Elbreki, A. M., Muftah, A. F., Sopian, K., Jarimi, H., Fazlizan, A., & Ibrahim, A. (2021). Experimental and economic analysis of passive cooling PV module using fins and planar reflector. Case Studies in Thermal Engineering, 23, 100801. https://doi.org/https://doi.org/10.1016/j.csite.2020.100801
  20. Elminshawy, N. A. S., El-Damhogi, D. G., Ibrahim, I. A., Elminshawy, A., & Osama, A. (2022). Assessment of floating photovoltaic productivity with fins-assisted passive cooling. Applied Energy, 325, 119810. https://doi.org/https://doi.org/10.1016/j.apenergy.2022.119810
  21. Elminshawy, N. A. S., Mohamed, A. M. I., Osama, A., Amin, I., Bassam, A. M., & Oterkus, E. (2022a). Performance and potential of a novel floating photovoltaic system in Egyptian winter climate on calm water surface. International Journal of Hydrogen Energy, 47(25), 12798–12814. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.02.034
  22. Elminshawy, N. A. S., Mohamed, A. M. I., Osama, A., Amin, I., Bassam, A. M., & Oterkus, E. (2022b). Performance and potential of a novel floating photovoltaic system in Egyptian winter climate on calm water surface. International Journal of Hydrogen Energy, 47(25), 12798–12814. https://doi.org/https://doi.org/10.1016/j.ijhydene.2022.02.034
  23. Elminshawy, N., Elminshawy, A., Osama, A., Bassyouni, M., & Arıcı, M. (2022). Experimental performance analysis of enhanced concentrated photovoltaic utilizing various mass flow rates of Al2O3-nanofluid: Energy, exergy, and exergoeconomic study. Sustainable Energy Technologies and Assessments, 53, 102723. https://doi.org/https://doi.org/10.1016/j.seta.2022.102723
  24. Ewe, W. Eng., Fudholi, Ahmad., Sopian, Kamaruzzaman., Moshery, R., Asim, N., Nuriana, Wahidin., & Ibrahim, Adnan. (2022). Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector. Energy, 254, 124366. https://doi.org/10.1016/j.energy.2022.124366
  25. Ewe Win Eng, Ahmad Fudholi, Kamaruzzaman Sopian, & Nilofar Asim. (2021). Modeling of bifacial photovoltaic-thermal (PVT) air heater with jet plate. International Journal of Heat and Technology, 39(4), 1117–1122. https://doi.org/10.18280/ijht.390409
  26. Farhan, A. A., & Hasan, D. J. (2021). An experimental investigation to augment the efficiency of photovoltaic panels by using longitudinal fins. Heat Transfer, 50(2), 1748–1757. https://doi.org/https://doi.org/10.1002/htj.21951
  27. Gomaa, M. R., Hammad, W., Al-Dhaifallah, M., & Rezk, H. (2020). Performance enhancement of grid-tied PV system through proposed design cooling techniques: An experimental study and comparative analysis. Solar Energy, 211, 1110–1127. https://doi.org/https://doi.org/10.1016/j.solener.2020.10.062
  28. Hernandez-Perez, J. G., Carrillo, J. G., Bassam, A., Flota-Banuelos, M., & Patino-Lopez, L. D. (2021). Thermal performance of a discontinuous finned heatsink profile for PV passive cooling. Applied Thermal Engineering, 184, 116238. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2020.116238
  29. Hudișteanu, S. V., Țurcanu, F. E., Cherecheș, N. C., Popovici, C. G., Verdeș, M., & Huditeanu, I. (2021). Enhancement of PV Panel Power Production by Passive Cooling Using Heat Sinks with Perforated Fins. Applied Sciences, 11(23). https://doi.org/10.3390/app112311323
  30. Ibrahim, A., Othman, M. Y., Ruslan, M. H., Mat, S., & Sopian, K. (2011). Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews, 15(1), 352–365. https://doi.org/10.1016/j.rser.2010.09.024
  31. Imad, S., Ibrahim, A., Sopian, K., Fazlizan, A., & Ishak, M. A. A. Bin. (2023). Performance Analysis of a Novel Photovoltaic Thermal PVT Double Pass Solar Air Heater with Cylindrical PCM Capsules using CFD. International Journal of Renewable Energy Research, 13(3). https://doi.org/https://doi.org/10.20508/ijrer.v13i3.14136.g8814
  32. Ishak, M. A. A. Bin, Ibrahim, A., Faizal, M., Fazlizan, A., Eng, W., & Kazem, H. A. (2023). The effect of a reversed circular jet impingement on A bifacial module PVT collector energy performance. Case Studies in Thermal Engineering, 52(November), 103752. https://doi.org/10.1016/j.csite.2023.103752
  33. Ishak, M. A. A. Bin, Ibrahim, A., Fazlizan, A., Fauzan, M. F., Sopian, K., & Rahmat, A. A. (2023). Exergy performance of a reversed circular flow jet impingement bifacial photovoltaic thermal (PVT) solar collector. Case Studies in Thermal Engineering, 49(May), 103322. https://doi.org/10.1016/j.csite.2023.103322
  34. Ishak, M. A. A. Bin, Ibrahim, A., Sopian, K., Faizal, M., Aqil Afham Rahmat, M., Rahmat, A., Sufiyan, A., & Hamid, A. (2023). Heat Transfer Performance of a Novel Circular Flow Jet Impingement Bifacial Photovoltaic Thermal PVT Solar Collector. 13(2). https://doi.org/https://doi.org/10.20508/ijrer.v13i2.13886.g8756
  35. Ishak, M. A. A. Bin., Ibrahim, Adnan., Sopian, Kamaruzzaman., Fauzan, M. Faizal., Rahmat, M. A. Afham., & Hamid, A. sufiyan Abd. (2023). Classification of Jet Impingement Solar Collectors – A Recent Development in Solar Energy Technology. International Journal of Renewable Energy Research-IJRER, 13(2), 802–817. https://doi.org/https://doi.org/10.20508/ijrer.v13i2.13884.g8755
  36. Ishak, M. A. A. Bin., Ibrahim, Adnan., Sopian, Kamaruzzaman., Fauzan, M. Faizal., Rahmat, M. A. Afham., & Yusaidi, N. Jannah. (2023). Performance and Economic Analysis of a Reversed Circular Flow Jet Impingement Bifacial PVT Solar Collector. International Journal of Renewable Energy Development, 12(4), 780–788. https://doi.org/https://doi.org/10.14710/ijred.2023.54348
  37. Ismail, F. B., Rahmat, M. A. A., Kazem, H. A., Al-Obaidi, A. Sh. M., & Ridwan, M. S. (2024). Maximizing energy via solar-powered smart irrigation: An approach utilizing a single-axis solar tracking mechanism. Irrigation and Drainage, 73(3), 829–845. https://doi.org/https://doi.org/10.1002/ird.2937
  38. Kanti, P. K., Shrivastav, A. P., Sharma, P., & Maiya, M. P. (2024). Thermal performance enhancement of metal hydride reactor for hydrogen storage with graphene oxide nanofluid: Model prediction with machine learning. International Journal of Hydrogen Energy, 52, 470–484. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.03.361
  39. Khelifa, A., El Hadi Attia, M., Harby, K., Elnaby Kabeel, A., Abdel-Aziz, M. M., & Abdelgaied, M. (2024). Experimental and economic evaluation on the performance improvement of a solar photovoltaic thermal system with skeleton-shaped fins. Applied Thermal Engineering, 248, 123180. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2024.123180
  40. Khor, Y. K., Hung, Y. M., & Lim, B. K. (2010). On the role of radiation view factor in thermal performance of straight-fin heat sinks. International Communications in Heat and Mass Transfer, 37(8), 1087–1095. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2010.06.012
  41. kumar Goel, A., Singh, S. N., & Prasad, B. N. (2022). Experimental investigation of thermo-hydraulic efficiency and performance characteristics of an impinging jet-finned type solar air heater. Sustainable Energy Technologies and Assessments, 52(PB), 102165. https://doi.org/10.1016/j.seta.2022.102165
  42. Luo, C., Li, C., Wan, X., & Zhao, Z. (2023). Convective Heat Transfer Coefficient of Insulation Paper–Oil Contact Surface of Transformer Vertical Oil Channel. Coatings, 13(1). https://doi.org/10.3390/coatings13010081
  43. Mamun, M. A. A., Islam, M. M., Hasanuzzaman, M., & Selvaraj, J. (2022). Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment, 3(3), 278–290. https://doi.org/https://doi.org/10.1016/j.enbenv.2021.02.001
  44. Munusamy, A., Barik, D., Sharma, P., Medhi, B. J., & Bora, B. J. (2024). Performance analysis of parabolic type solar water heater by using copper-dimpled tube with aluminum coating. Environmental Science and Pollution Research, 31(53), 62376–62391. https://doi.org/10.1007/s11356-022-25071-5
  45. Nižetić, S., Jurčević, M., Čoko, D., & Arıcı, M. (2021). A novel and effective passive cooling strategy for photovoltaic panel. Renewable and Sustainable Energy Reviews, 145, 111164. https://doi.org/https://doi.org/10.1016/j.rser.2021.111164
  46. Patel, M. T., Vijayan, R. A., Asadpour, R., Varadharajaperumal, M., Khan, M. R., & Alam, M. A. (2020). Temperature-dependent energy gain of bifacial PV farms : A global perspective. Applied Energy, 276(May), 115405. https://doi.org/10.1016/j.apenergy.2020.115405
  47. Rahmat, M. A. A., Mohamed, H., Zuhdi, A. W. M., & Roslan, M. E. B. M. (2023). Developing a spreadsheet-based simulator for solar rooftop installation assessment. AIP Conference Proceedings, 2544(1), 40052. https://doi.org/10.1063/5.0119883
  48. Rahmat, M. A. Afham., Hamid, A. S. Abd., Lu, Yuanshen., Ishak, M. A. A. Bin., Suheel, S. Zishan., Fazlizan, Ahmad., & Ibrahim, Adnan. (2022). An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability (Switzerland), 14(20). https://doi.org/10.3390/su142013684
  49. Razali, S. N., Ibrahim, A., Fazlizan, A., Fauzan, M. F., Ajeel, R. K., Zairah Ahmad, E., Ewe, W. E., & Kazem, H. A. (2023a). Performance enhancement of photovoltaic modules with passive cooling multidirectional tapered fin heat sinks (MTFHS). Case Studies in Thermal Engineering, 50, 103400. https://doi.org/https://doi.org/10.1016/j.csite.2023.103400
  50. Razali, S. N., Ibrahim, A., Fazlizan, A., Fauzan, M. F., Ajeel, R. K., Zairah Ahmad, E., Ewe, W. E., & Kazem, H. A. (2023b). Performance enhancement of photovoltaic modules with passive cooling multidirectional tapered fin heat sinks (MTFHS). Case Studies in Thermal Engineering, 50, 103400. https://doi.org/https://doi.org/10.1016/j.csite.2023.103400
  51. T. Khatib A. Mohamed, M. M., & Sopian, K. (2015). Optimization of the Tilt Angle of Solar Panels for Malaysia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(6), 606–613. https://doi.org/10.1080/15567036.2011.588680
  52. Xu, H., Wang, N., Zhang, C., Qu, Z., & Karimi, F. (2021). Energy conversion performance of a PV/T-PCM system under different thermal regulation strategies. Energy Conversion and Management, 229(December 2020), 113660. https://doi.org/10.1016/j.enconman.2020.113660
  53. Yusaidi, N. J., Fauzan, M. F., Abdullah, A. F., Ibrahim, A., & Ishak, A. A. (2024). Theoretical and experimental investigations on the effect of double pass solar air heater with staggered-diamond shaped fins arrangement. Case Studies in Thermal Engineering, 60(May), 104619. https://doi.org/10.1016/j.csite.2024.104619

Last update:

No citation recorded.

Last update: 2025-05-24 08:18:43

No citation recorded.