skip to main content

Economic-environmental analysis of solar-wind-biomass hybrid renewable energy system for hydrogen production: A case study in Vietnam

1University of Science and Technology, The University of Danang, Danang, Viet Nam

2Vinh University of Technology and Education, 117 Nguyen Viet Xuan Street, Hung Dung Ward, Vinh City, Viet Nam

3Faculty of Engineering, Dong Nai Technology University, Bien Hoa City, Viet Nam.

4 Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.

View all affiliations
Received: 28 Nov 2024; Revised: 19 Mar 2025; Accepted: 6 Apr 2025; Available online: 14 Apr 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Combining biomass with solar and wind energy to produce electricity and hydrogen, referred to as the Solar-Wind-Biomass Hybrid Renewable Energy System (SWB-HRES), provides optimal economic and environmental efficiency. This paper presents research findings from a case study of SWB-HRES implemented in Hoa Bac commune, Danang City, Vietnam, utilizing HOMER software for system modeling and optimization. The study aims to identify the optimal configuration for SWB-HRES with hydrogen production and assess its compatibility with grid-connected SWB-HRES without hydrogen production. A detailed analysis of greenhouse gas (GHG) emission reductions corresponding to different system configurations is also provided. The results indicate that the optimal SWB-HRES configuration for Hoa Bac includes a 15-kW solar panel, a 9-kW wind turbine, an 8.3 kW syngas generator, a 20-kW electrolyzer, a 24-kW converter, and a hydrogen storage tank with a capacity of 1 kg. This setup supports an annual electricity load of 7,300 kWh and produces 1,183 kilograms of hydrogen per year. For grid-connected HRES with hydrogen production, the solar-biomass system demonstrates superior economic and environmental efficiency compared to the wind-biomass configuration. The economic efficiency of SWB-HRES with hydrogen production matches that of SWB-HRES selling electricity to the grid when the hydrogen cost is $4.5/kg for discontinuous syngas generator operation and $5/kg for continuous operation. Furthermore, integrating biomass energy into HRES proves to be an effective strategy for GHG emission reduction. For the same electricity output of 62,863 kWh/year, the solar-wind HRES without hydrogen production achieves a GHG emission reduction of 33 tons of CO2-eq, while the solar-wind-biomass HRES with hydrogen production achieves a reduction of 217 tons of CO2-eq. Given that the performance of HRES depends on geographic location, equipment availability, and energy pricing, practical implementations should validate simulation results with experimental data collected on-site.
Fulltext View|Download
Keywords: Renewable energy; Hybrid energy system; Economic analysis; Hydrogen production; Energy transition; Greenhouse gas emission

Article Metrics:

  1. Abdelsalam, R.A., Mohamed, M., Farag, H.E.Z., El-Saadany, E.F., 2024. Green hydrogen production plants: A techno-economic review. Energy Convers. Manag. 319, 118907. https://doi.org/10.1016/j.enconman.2024.118907
  2. Agyekum, E.B., 2024. Is Africa ready for green hydrogen energy takeoff? – A multi-criteria analysis approach to the opportunities and barriers of hydrogen production on the continent. Int. J. Hydrogen Energy 49, 219–233. https://doi.org/10.1016/j.ijhydene.2023.07.229
  3. Ahmed, M., Dincer, I., 2019. A review on photoelectrochemical hydrogen production systems: Challenges and future directions. Int. J. Hydrogen Energy 44, 2474–2507. https://doi.org/10.1016/j.ijhydene.2018.12.037
  4. Akyuz, E., Oktay, Z., Dincer, I., 2012. Performance investigation of hydrogen production from a hybrid wind-PV system. Int. J. Hydrogen Energy 37, 16623–16630. https://doi.org/10.1016/j.ijhydene.2012.02.149
  5. Alhijazi, A.A.K., Almasri, R.A., Alloush, A.F., 2023. A Hybrid Renewable Energy (Solar/Wind/Biomass) and Multi-Use System Principles, Types, and Applications: A Review. Sustainability 15, 16803. https://doi.org/10.3390/su152416803
  6. Alzahrani, A., Ramu, S.K., Devarajan, G., Vairavasundaram, I., Vairavasundaram, S., 2022. A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy. Energies 15, 7979. https://doi.org/10.3390/en15217979
  7. Armijo, J., Philibert, C., 2020. Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina. Int. J. Hydrogen Energy 45, 1541–1558. https://doi.org/10.1016/j.ijhydene.2019.11.028
  8. Ayub, Y., Zhou, J., Shi, T., Toniolo, S., Ren, J., 2025. Sustainability assessment of blue hydrogen production through biomass gasification: A comparative analysis of thermal, solar, and wind energy sources. Bioresour. Technol. 418, 131798. https://doi.org/10.1016/j.biortech.2024.131798
  9. Badgett, A., Ruth, M., James, B., Pivovar, B., 2021. Methods identifying cost reduction potential for water electrolysis systems. Curr. Opin. Chem. Eng. 33, 100714. https://doi.org/10.1016/j.coche.2021.10071
  10. Baghel, N., Manjunath, K., Kumar, A., 2024. Assessment of solar-biomass hybrid power system for decarbonizing and sustainable energy transition for academic building. Process Saf. Environ. Prot. 187, 1201–1212. https://doi.org/10.1016/j.psep.2024.05.004
  11. Bui, T.M.T., Tran, T.H.T., Cao, X.T., 2023. Improving Syngas Quality by enriching Air by Oxygen used for Oxidant to Gasifier, in: Proceeding of 26th National Conference on Fluid Mechanic. Transport and Communication Publishing House, pp. 796–805
  12. Bui, V.G., Vo, T.H., Bui, T.M.T., Thi, T.X.N., 2021. Characteristics of Biogas-Hydrogen Engines in a Hybrid Renewable Energy System. Int. Energy J. 21, 467–480
  13. Bukar, A.L., Chaitusaney, S., Kawabe, K., 2024. Optimal design of on-site PV-based battery grid-tied green hydrogen production system. Energy Convers. Manag. 307, 118378. https://doi.org/10.1016/j.enconman.2024.118378
  14. Cao, L., Yu, I.K.M., Xiong, X., Tsang, D.C.W., Zhang, S., Clark, J.H., Hu, C., Ng, Y.H., Shang, J., Ok, Y.S., 2020. Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environ. Res. 186, 109547. https://doi.org/10.1016/j.envres.2020.109547
  15. Chozhavendhan, S., Rajamehala, M., Karthigadevi, G., Praveenkumar, R., Bharathiraja, B., 2020. A review on feedstock, pretreatment methods, influencing factors, production and purification processes of bio-hydrogen production. Case Stud. Chem. Environ. Eng. 2, 100038. https://doi.org/10.1016/j.cscee.2020.100038
  16. Cormos, C.-C., 2024. Decarbonized green hydrogen production by sorption-enhanced biomass gasification: An integrated techno-economic and environmental evaluation. Int. J. Hydrogen Energy 95, 592–603. https://doi.org/10.1016/j.ijhydene.2024.11.281
  17. Dahmen, N., Dinjus, E., Kruse, A., 2025. Fuels – Hydrogen – Hydrogen Production | Biomass Based, in: Encyclopedia of Electrochemical Power Sources. Elsevier, pp. 246–255. https://doi.org/10.1016/B978-0-323-96022-9.00160-2
  18. Dash, S.K., Chakraborty, S., Elangovan, D., 2023. A Brief Review of Hydrogen Production Methods and Their Challenges. Energies 16, 1141. https://doi.org/10.3390/en16031141
  19. Demir, H., 2024. Design and optimization of hybrid renewable energy systems for hydrogen production at Aksaray University campus. Process Saf. Environ. Prot. 192, 543–556. https://doi.org/10.1016/j.psep.2024.10.080
  20. Dolle, C., Neha, N., Coutanceau, C., 2022. Electrochemical hydrogen production from biomass. Curr. Opin. Electrochem. 31, 100841. https://doi.org/10.1016/j.coelec.2021.100841
  21. Dodo, U.A., Ashigwuike, E.C., Emechebe, J.N., 2022. Techno-economic Evaluation of Municipal Solid Waste–Fueled Biogas Generator as a Backup in a Decentralized Hybrid Power System. Process Integr. Optim. Sustain. 6, 431–446. https://doi.org/10.1007/s41660-022-00223-9
  22. Dufo-López, R., Bernal-Agustín, J.L., Contreras, J., 2007. Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage. Renew. Energy 32, 1102–1126. https://doi.org/10.1016/j.renene.2006.04.013
  23. El-Emam, R.S., Özcan, H., 2019. Comprehensive review on the techno-economics of sustainable large-scale clean hydrogen production. J. Clean. Prod. 220, 593–609. https://doi.org/10.1016/j.jclepro.2019.01.309
  24. El-Shafie, M., 2023. Hydrogen production by water electrolysis technologies: A review. Results Eng. 20, 101426. https://doi.org/10.1016/j.rineng.2023.101426
  25. Fopah‐Lele, A., Kabore‐Kere, A., Tamba, J.G., Yaya‐Nadjo, I., 2021. Solar electricity storage through green hydrogen production: A case study. Int. J. Energy Res. 45, 13007–13021. https://doi.org/10.1002/er.6630
  26. Garcia G., M., Oliva H., S., 2023. Technical, economic, and CO2 emissions assessment of green hydrogen production from solar/wind energy: The case of Chile. Energy 278, 127981. https://doi.org/10.1016/j.energy.2023.127981
  27. Godula-Jopek, A., 2015. Hydrogen production: by electrolysis. John Wiley & Sons
  28. Hasan, M.M., Genç, G., 2022. Techno-economic analysis of solar/wind power-based hydrogen production. Fuel 324, 124564. https://doi.org/10.1016/j.fuel.2022.124564
  29. Hassan, N.S., Jalil, A.A., Rajendran, S., Khusnun, N.F., Bahari, M.B., Johari, A., Kamaruddin, M.J., Ismail, M., 2024. Recent review and evaluation of green hydrogen production via water electrolysis for a sustainable and clean energy society. Int. J. Hydrogen Energy 52, 420–441. https://doi.org/10.1016/j.ijhydene.2023.09.068
  30. Heidari, S., Shojaei, A.R., Esmaeilzadeh, F., Mowla, D., 2024. Optimization of a novel hydrogen production process integrating biomass and sorption-enhanced reforming for reduced CO2 emissions. J. Environ. Chem. Eng. 12, 114069. https://doi.org/10.1016/j.jece.2024.114069
  31. Heidarnejad, P., Genceli, H., Hashemian, N., Asker, M., Al-Rawi, M., 2024. Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends. Energies 17, 3788. https://doi.org/10.3390/en17153788
  32. Herdem, M.S., Mazzeo, D., Matera, N., Baglivo, C., Khan, N., Afnan, Congedo, P.M., De Giorgi, M.G., 2024. A brief overview of solar and wind-based green hydrogen production systems: Trends and standardization. Int. J. Hydrogen Energy 51, 340–353. https://doi.org/10.1016/j.ijhydene.2023.05.172
  33. Hoang, A.T., Pandey, A., Chen, W.-H., Ahmed, S.F., Nižetić, S., Ng, K.H., Said, Z., Duong, X.Q., Ağbulut, Ü., Hadiyanto, H., Nguyen, X.P., 2023a. Hydrogen Production by Water Splitting with Support of Metal and Carbon-Based Photocatalysts. ACS Sustain. Chem. Eng. 11, 1221–1252. https://doi.org/10.1021/acssuschemeng.2c05226
  34. Hoang, A.T., Pandey, A., Lichtfouse, E., Bui, V.G., Veza, I., Nguyen, H.L., Nguyen, X.P., 2023b. Green hydrogen economy: Prospects and policies in Vietnam. Int. J. Hydrogen Energy 48, 31049–31062. https://doi.org/10.1016/j.ijhydene.2023.05.306
  35. Hosseini, S.E., Wahid, M.A., 2016. Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 57, 850–866
  36. Huang, S., Duan, W., Jin, Z., Yi, S., Lv, Q., Jiang, X., 2025. Progress in carbon capture and impurities removal for high purity hydrogen production from biomass thermochemical conversion. Carbon Capture Sci. Technol. 14, 100345. https://doi.org/10.1016/j.ccst.2024.100345
  37. Hussam, W.K., Barhoumi, E.M., Abdul-Niby, M., Sheard, G.J., 2024. Techno-economic analysis and optimization of hydrogen production from renewable hybrid energy systems: Shagaya renewable power plant-Kuwait. Int. J. Hydrogen Energy 58, 56–68. https://doi.org/10.1016/j.ijhydene.2024.01.153
  38. Iribarren, D., Susmozas, A., Petrakopoulou, F., Dufour, J., 2014. Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. J. Clean. Prod. 69, 165–175. https://doi.org/10.1016/j.jclepro.2014.01.068
  39. Jahangir, M.H., Cheraghi, R., 2020. Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load. Sustain. Energy Technol. Assessments 42, 100895. https://doi.org/10.1016/j.seta.2020.100895
  40. Ji, M., Wang, J., 2021. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. Int. J. Hydrogen Energy 46, 38612–38635. https://doi.org/10.1016/j.ijhydene.2021.09.142
  41. Kachroo, H., Verma, V.K., Doddapaneni, T.R.K.C., Kaushal, P., Jain, R., 2024. Organic/metallic component analysis of lignocellulosic biomass: A thermochemical-perspective-based study on rice and bamboo waste. Bioresour. Technol. 403, 130835. https://doi.org/10.1016/j.biortech.2024.130835
  42. Kharisma, A.D., Amekan, Y., Sarto, S., Cahyanto, M.N., 2022. Effect of Hydrogen Peroxide on Hydrogen Production from Melon Fruit (Cucumis melo L.) Waste by Anaerobic Digestion Microbial Community. Int. J. Renew. Energy Dev. 11, 95–101. https://doi.org/10.14710/ijred.2022.40883
  43. Koleva, M., Guerra, O.J., Eichman, J., Hodge, B.-M., Kurtz, J., 2021. Optimal design of solar-driven electrolytic hydrogen production systems within electricity markets. J. Power Sources 483, 229183. https://doi.org/10.1016/j.jpowsour.2020.229183
  44. Komorowska, A., Benalcazar, P., Kamiński, J., 2023. Evaluating the competitiveness and uncertainty of offshore wind-to-hydrogen production: A case study of Poland. Int. J. Hydrogen Energy 48, 14577–14590. https://doi.org/10.1016/j.ijhydene.2023.01.015
  45. Kong, G., Liu, Q., Ji, G., Jia, H., Cao, T., Zhang, X., Han, L., 2023. Improving hydrogen-rich gas production from biomass catalytic steam gasification over metal-doping porous biochar. Bioresour. Technol. 387, 129662. https://doi.org/10.1016/j.biortech.2023.129662
  46. Kumar, R., Channi, H.K., 2022. A PV-Biomass off-grid hybrid renewable energy system (HRES) for rural electrification: Design, optimization and techno-economic-environmental analysis. J. Clean. Prod. 349, 131347. https://doi.org/10.1016/j.jclepro.2022.131347
  47. Laimon, M., Yusaf, T., 2024. Towards energy freedom: Exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system. Renew. Energy 222, 119948. https://doi.org/10.1016/j.renene.2024.119948
  48. Le, T.T., Jain, A., El-Shafay, A.S., Bora, B.J., Sharma, P., Nguyen, X.P., Duong, X.Q., Maireles Torres, P., Hoang, A.T., 2025. Comprehensive analysis of waste-to-hydrogen technologies integrated with circular economy principles: Potential and challenges. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2025.01.048
  49. Li, M., Wang, T., Chen, X., Ma, X., 2023. Conversion study from lignocellulosic biomass and electric energy to H2 and chemicals. Int. J. Hydrogen Energy 48, 21004–21017. https://doi.org/10.1016/j.ijhydene.2022.09.191
  50. Li, M., Wang, T., Zhao, M., Wang, Y., 2022. Research on hydrogen production and degradation of corn straw by circular electrolysis with polyoxometalate (POM) catalyst. Int. J. Hydrogen Energy 47, 15357–15369. https://doi.org/10.1016/j.ijhydene.2021.11.111
  51. Li, R., Yang, Z., Duan, Y., 2023. Energy, economic and environmental performance evaluation of co-gasification of coal and biomass negative-carbon emission system. Appl. Therm. Eng. 231, 120917. https://doi.org/10.1016/j.applthermaleng.2023.120917
  52. Liu, R., Zheng, Z., Spurgeon, J., Yang, X., 2014. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504–2517. https://doi.org/10.1039/C4EE00450G
  53. Liu, W., Liu, C., Gogoi, P., Deng, Y., 2020. Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches. Engineering. 6, 1351–1363. https://doi.org/10.1016/j.eng.2020.02.021
  54. Luo, H., Barrio, J., Sunny, N., Li, A., Steier, L., Shah, N., Stephens, I.E.L., Titirici, M., 2021. Progress and Perspectives in Photo‐ and Electrochemical‐Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. Adv. Energy Mater. 11. https://doi.org/10.1002/aenm.202101180
  55. Lykas, P., Bellos, E., Kitsopoulou, A., Tzivanidis, C., 2024. Dynamic analysis of a solar-biomass-driven multigeneration system based on s-CO2 Brayton cycle. Int. J. Hydrogen Energy 59, 1268–1286. https://doi.org/10.1016/j.ijhydene.2024.02.093
  56. Mokhtara, C., Negrou, B., Settou, N., Bouferrouk, A., Yao, Y., 2021. Design optimization of grid-connected PV-Hydrogen for energy prosumers considering sector-coupling paradigm: Case study of a university building in Algeria. Int. J. Hydrogen Energy 46, 37564–37582. https://doi.org/10.1016/j.ijhydene.2020.10.069
  57. Morya, R., Raj, T., Lee, Y., Kumar Pandey, A., Kumar, D., Rani Singhania, R., Singh, S., Prakash Verma, J., Kim, S.-H., 2022. Recent updates in biohydrogen production strategies and life–cycle assessment for sustainable future. Bioresour. Technol. 366, 128159. https://doi.org/10.1016/j.biortech.2022.128159
  58. Nanvaei Qeshmi, N., Mirabdolah Lavasani, A., Vahabi, M., Salehi, G., Nimafar, M., 2025. Optimization and techno-economic-environmental assessments of a biomass-powered multi-generation plant for hydrogen and freshwater production. Renew. Energy 240, 122216. https://doi.org/10.1016/j.renene.2024.122216
  59. Nasser, M., Megahed, T.F., Ookawara, S., Hassan, H., 2022. Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic. Energy Convers. Manag. 267, 115870. https://doi.org/10.1016/j.enconman.2022.115870
  60. Navarrete, A., Zhou, Y., 2024. The price of green hydrogen: How and why we estimate future production costs [WWW Document]. ICCT2020
  61. Nguyen, H.H., Pham, V.Q., Bui, V.G., 2024. Optimization of Solar-Wind-Biomass Hybrid Renewable Energy System at Cu Lao Cham Island. J. Sci. Technol. Univ. Danang 22, 25–31
  62. Nguyen, V.G., Sharma, P., Bora, B.J., Bui, T.M.T., Efremov, C., Tran, M.H., Kowalski, J., Osman, S.M., Cao, D.N., Dong, V.H., 2024. Techno-economic analysis of a hybrid energy system for electrification using an off-grid solar/biogas/battery system employing HOMER: A case study in Vietnam. Process Saf. Environ. Prot. 191, 1353–1367. https://doi.org/10.1016/j.psep.2024.09.046
  63. Ni, M., Leung, D.Y.C., Leung, M.K.H., Sumathy, K., 2006. An overview of hydrogen production from biomass. Fuel Process. Technol. 87, 461–472. https://doi.org/10.1016/j.fuproc.2005.11.003
  64. Okonkwo, P.C., Mansir, I.B., Barhoumi, E.M., Emori, W., Radwan, A.B., Shakoor, R.A., Uzoma, P.C., Pugalenthi, M.R., 2022. Utilization of renewable hybrid energy for refueling station in Al-Kharj, Saudi Arabia. Int. J. Hydrogen Energy 47, 22273–22284. https://doi.org/10.1016/j.ijhydene.2022.05.040
  65. Padro, G.P., Putsche, V., 1999. Survey of the Economics of Hydrogen Technologies. National Renewable Energy Laboratory. 1-57
  66. Palmer, G., Roberts, A., Hoadley, A., Dargaville, R., Honnery, D., 2021. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy Environ. Sci. 14, 5113–5131. https://doi.org/10.1039/D1EE01288F
  67. Phung, M.T., Bui, V.G., Tran, T.S., 2024. Proceedings of the 3rd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2022), Lecture Notes in Mechanical Engineering. Springer Nature Switzerland, Cham. https://doi.org/10.1007/978-3-031-39090-6
  68. Rusdianasari, -, Taqwa, A., Syarif, A., Bow, Y., 2023. Hydrogen Recovery from Electroplating Wastewater Electrocoagulation Treatment. Int. J. Adv. Sci. Eng. Inf. Technol. 13, 592–598. https://doi.org/10.18517/ijaseit.13.2.16667
  69. Sanz-Bermejo, J., Muñoz-Antón, J., Gonzalez-Aguilar, J., Romero, M., 2014. Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production. Appl. Energy 131, 238–247. https://doi.org/10.1016/j.apenergy.2014.06.028
  70. Saravanakumar, A., Vijayakumar, P., Hoang, A.T., Kwon, E.E., Chen, W.-H., 2023. Thermochemical conversion of large-size woody biomass for carbon neutrality: Principles, applications, and issues. Bioresour. Technol. 370, 128562. https://doi.org/10.1016/j.biortech.2022.128562
  71. Shanmugam, S., Mathimani, T., Rajendran, K., Sekar, M., Rene, E.R., Chi, N.T.L., Ngo, H.H., Pugazhendhi, A., 2023. Perspective on the strategies and challenges in hydrogen production from food and food processing wastes. Fuel 338, 127376. https://doi.org/10.1016/j.fuel.2022.127376
  72. Shokri, A., Shakibi, H., Azizi, S., Yari, M., Mahmoudi, S.M.S., 2024. Optimization of biomass-fueled multigeneration system using SOFC for electricity, hydrogen, and freshwater production. Int. J. Hydrogen Energy 88, 1293–1320. https://doi.org/10.1016/j.ijhydene.2024.09.161
  73. Swaminathan, P., Ghosh, A., Sunantha, G., Sivagami, K., Mohanakrishna, G., Aishwarya, S., Shah, S., Sethumadhavan, A., Ranjan, P., Prajapat, R., 2024. A comprehensive review of microbial electrolysis cells: Integrated for wastewater treatment and hydrogen generation. Process Saf. Environ. Prot. 190, 458–474. https://doi.org/10.1016/j.psep.2024.08.032
  74. Taipabu, M.I., Viswanathan, K., Wu, W., Hattu, N., Atabani, A.E., 2022. A critical review of the hydrogen production from biomass-based feedstocks: Challenge, solution, and future prospect. Process Saf. Environ. Prot. 164, 384–407. https://doi.org/10.1016/j.psep.2022.06.006
  75. Tarhan, C., Çil, M.A., 2021. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. J. Energy Storage 40, 102676. https://doi.org/10.1016/j.est.2021.102676
  76. Terlouw, T., Bauer, C., McKenna, R., Mazzotti, M., 2022. Large-scale hydrogen production via water electrolysis: a techno-economic and environmental assessment. Energy Environ. Sci. 15, 3583–3602. https://doi.org/10.1039/D2EE01023B
  77. Touili, S., Alami Merrouni, A., Azouzoute, A., El Hassouani, Y., Amrani, A., 2018. A technical and economical assessment of hydrogen production potential from solar energy in Morocco. Int. J. Hydrogen Energy 43, 22777–22796. https://doi.org/10.1016/j.ijhydene.2018.10.136
  78. Umer, M., Brandoni, C., Jaffar, M., Hewitt, N.J., Dunlop, P., Zhang, K., Huang, Y., 2024a. An Experimental Investigation of Hydrogen Production through Biomass Electrolysis. Processes 12, 112. https://doi.org/10.3390/pr12010112
  79. Umer, M., Brandoni, C., Tretsiakova, S., Hewitt, N., Dunlop, P., Mokim, M.D., Zhang, K., Huang, Y., 2024b. Hydrogen production through polyoxometalate catalysed electrolysis from biomass components and food waste. Results Eng. 23, 102803. https://doi.org/10.1016/j.rineng.2024.102803
  80. Wang, L., Si, W., Tong, Y., Hou, F., Pergolesi, D., Hou, J., Lippert, T., Dou, S.X., Liang, J., 2020. Graphitic carbon nitride (g‐C 3 N 4 )‐based nanosized heteroarrays: Promising materials for photoelectrochemical water splitting. Carbon Energy 2, 223–250. https://doi.org/10.1002/cey2.48
  81. Widera, B., 2020. Renewable hydrogen implementations for combined energy storage, transportation and stationary applications. Therm. Sci. Eng. Prog. 16, 100460. https://doi.org/10.1016/j.tsep.2019.100460
  82. Xuan, N.-T.T., Bui, T.M.T., Bui, V.G., 2023. Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier. Int. J. Renew. Energy Dev. 12, 601–614. https://doi.org/10.14710/ijred.2023.53994
  83. Yong, Y.S., Abdul Rasid, R., 2022. Process simulation of hydrogen production through biomass gasification: Introduction of torrefaction pre-treatment. Int. J. Hydrogen Energy 47, 42040–42050. https://doi.org/10.1016/j.ijhydene.2021.07.010
  84. Younas, M., Shafique, S., Hafeez, A., Javed, F., Rehman, F., 2022. An overview of hydrogen production: current status, potential, and challenges. Fuel 316, 123317
  85. Zeng, K., Zhang, D., 2010. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326. https://doi.org/10.1016/j.pecs.2009.11.002
  86. Zhang, B., Zhang, H., Pan, Y., Shao, J., Wang, X., Jiang, Y., Xu, X., Chu, S., 2023. Photoelectrochemical conversion of plastic waste into high-value chemicals coupling hydrogen production. Chem. Eng. J. 462, 142247. https://doi.org/10.1016/j.cej.2023.142247
  87. Zhou, F., Zhu, L., Yang, L., Hong, Y., Xu, J., 2023. Analysis of a novel power plant based on tars from biomass gasifier as fuel gas. Appl. Therm. Eng. 233, 121148. https://doi.org/10.1016/j.applthermaleng.2023.121148

Last update:

No citation recorded.

Last update: 2025-05-24 22:32:19

No citation recorded.