skip to main content

Modeling and optimization of hybrid hydro-solar-wind systems for green hydrogen production in Togo

1Laboratory of Solar Energy, University of Lomé, Togo

2Atakpamé Higher Normal School, Togo

3Centre d'Excellence Régional pour la Maîtrise de l'Électricité (CERME), University of Lomé, Togo

4 Laboratory of Applied Hydrology, National Institute of Water, University of Abomey-Calavi, Benin

View all affiliations
Received: 6 Feb 2025; Revised: 10 Apr 2025; Accepted: 13 May 2025; Available online: 25 Jun 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study examines the feasibility and optimization of hybrid hydro-solar-wind-hydrogen energy systems in Togo, focusing on seasonal variations and energy management. Data on solar radiation, wind speed, and hydropower were obtained from meteorological stations, satellite databases, and the Nangbéto station. The results of this study show that the energy management system at the Nangbéto dam could rely on hydrogen storage and a 2.75 MW fuel cell to balance seasonal fluctuations, while a ±3 MW battery would stabilize power output. During periods of high hydropower production, surplus energy could be converted into hydrogen to ensure a continuous supply during low-flow months. The flow fluctuates seasonally, ranging from 1.5–20 m³/s in dry months to over 120 m³/s in the wet season, affecting hydrogen production (5–25 kg/day). Electrolysis efficiency remains stable (65–85%) due to optimized management. The hydro-solar-wind hybrid system converts up to 20% of hydropower into hydrogen, with peak production in August (~1,700 kg/month). Selected sites over Togo, particularly Blitta and Alédjo, show potential for hydrogen infrastructure, with Blitta yielding the most hydrogen (532.15 kg annually) and Lomé the least (482.72 kg) due to differences in solar irradiance. The study highlights the role of energy storage, hybrid integration, and policy support to enhance Togo’s hydrogen production and long-term energy stability.

Fulltext View|Download
Keywords: Hydro-solar-wind integration; green hydrogen; Renewable energy; sustainability; Togo
Funding: 01BP 1515 Lomé1 – TOGO / Tél : +228 90 17 47 63 / cerme_ul@univ-lome.tg / www.cerme-togo.org

Article Metrics:

  1. Abdellatif, H. E., Belaadi, A., Arshad, A., Bourchak, M., & Ghernaout, D. (2024). Enhanced solar energy utilization of thermal energy storage tanks with phase change material and baffle incorporating holes. Thermal Science and Engineering Progress, 52. https://doi.org/10.1016/j.tsep.2024.102674
  2. Agence de Régulation du Secteur de l'Électricité (ARSE). (2019). Rapport annuel sur l'électrification au Togo
  3. Ahmad, S., Hasan, S. M. N., Hossain, M. S., Uddin, R., Ahmed, T., Mustayen, A. G. M. B., Hazari, M. R., Hassan, M., Parvez, M. S., & Saha, A. (2024). A review of hybrid renewable and sustainable power supply system: Unit sizing, optimization, control, and management. Energies, 17(23), 6027. https://doi.org/10.3390/en17236027
  4. Ahmed, M., & Dincer, I. (2019). A review on photoelectrochemical hydrogen production systems: Challenges and future directions. International Journal of Hydrogen Energy, 44, 2474-2507. https://doi.org/10.1016/j.ijhydene.2018.12.037
  5. Alzahrani, A., Ramu, S. K., Devarajan, G., Vairavasundaram, I., & Vairavasundaram, S. (2022). A review on hydrogen-based hybrid microgrid system: Topologies for hydrogen energy storage, integration, and energy management with solar and wind energy. Energies, 15, 7979. https://doi.org/10.3390/en15217979
  6. Ayodele, T. R., & Munda, J. L. (2019). Potential and economic viability of green hydrogen production by water electrolysis using wind energy resources in South Africa. International Journal of Hydrogen Energy, 44(33), 17669-17687. https://doi.org/10.1016/j.ijhydene.2019.05.077
  7. Ayodele, T. R., Jimoh, A. A., Munda, J. L., & Agee, J. T. (2012). Wind distribution and capacity factor estimation for wind turbines in the coastal region of South Africa. Energy Conversion and Management, 64, 614-625. https://doi.org/10.1016/j.enconman.2012.06.007
  8. Boretti, A. (2018). Cost and production of solar thermal and solar photovoltaics power plants in the United States. Renewable Energy Focus, 26, 93-99. https://doi.org/10.1016/j.ref.2018.07.002
  9. Brodny, J., & Tutak, M. (2020). Analyzing similarities between the European Union countries in terms of the structure and volume of energy production from renewable energy sources. Energies, 13(4), 913. https://doi.org/10.3390/en13040913
  10. Caillard, A., Yeganyan, R., Cannone, C., Plazas-Niño, F., & Howells, M. (2024). A critical analysis of Morocco's green hydrogen roadmap: A modelling approach to assess country readiness from the energy trilemma perspective. Climate, 12(5), 61. https://doi.org/10.3390/cli12050061
  11. Cao, L., Yu, I. K. M., Xiong, X., Tsang, D. C. W., Zhang, S., Clark, J. H., Hu, C., Ng, Y. H., Shang, J., & Ok, Y. S. (2020). Biorenewable hydrogen production through biomass gasification: A review and future prospects. Environmental Research, 186, 109547. https://doi.org/10.1016/j.envres.2020.109547
  12. Compaore, A., Ouedraogo, B., Haro, K., Ouedraogo, R., Belem, Y., & Sanogo, O. (2022). Study optimization of a hybrid solar-wind system from an individual in Ouagadougou. Open Journal of Applied Sciences, 12, 1796-1808. https://doi.org/10.4236/ojapps.2022.1211124
  13. Connolly, D., Lund, H., Mathiesen, B. V., & Leahy, M. (2010). A review of computer tools for analyzing the integration of renewable energy into various energy systems. Applied Energy, 87(4), 1059-1082. https://doi.org/10.1016/j.apenergy.2009.09.026
  14. Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes (2nd ed.). John Wiley & Sons. https://doi.org/10.1002/9781118671603
  15. El-Shafie, M. (2023). Hydrogen production by water electrolysis technologies: A review. Results in Engineering, 20, 101426. https://doi.org/10.1016/j.rineng.2023.101426
  16. Fopah-Lele, A., Kabore-Kere, A., Tamba, J. G., & Yaya-Nadjo, I. (2021). Solar electricity storage through green hydrogen production: A case study. International Journal of Energy Research, 45, 13007-13021. https://doi.org/10.1002/er.6630
  17. Hoang, A. T., Pandey, A., Lichtfouse, E., Bui, V. G., Veza, I., Nguyen, H. L., & Nguyen, X. P. (2023). Green hydrogen economy: Prospects and policies in Vietnam. International Journal of Hydrogen Energy, 48, 31049-31062. https://doi.org/10.1016/j.ijhydene.2023.05.306
  18. Huld, T., Müller, R., & Gambardella, A. (2012). A new solar radiation database for estimating PV performance in Europe and Africa. Solar Energy, 86(6), 1803-1815. https://doi.org/10.1016/j.solener.2012.03.006
  19. Hussam, W. K., Barhoumi, E. M., Abdul-Niby, M., & Sheard, G. J. (2024). Techno-economic analysis and optimization of hydrogen production from renewable hybrid energy systems: Shagaya renewable power plant-Kuwait. International Journal of Hydrogen Energy, 58, 56-68. https://doi.org/10.1016/j.ijhydene.2024.01.153
  20. Idriss, A. I., Mohamed, A. A., Ahmed, R. A., Atteye, H. A., Mohamed, H. D., & Haitham, S. (2025). Ramadan sustainable green hydrogen production evaluating in Africa: Solar energy's role in reducing carbon footprint. International Journal of Hydrogen Energy, 50(3), 1234-1250. https://doi.org/10.1016/j.ijhydene.2025.01.276
  21. Kachroo, H., Verma, V. K., Doddapaneni, T. R. K. C., Kaushal, P., & Jain, R. (2024). Organic/metallic component analysis of lignocellulosic biomass: A thermochemical-perspective-based study on rice and bamboo waste. Bioresource Technology, 403, 130835. https://doi.org/10.1016/j.biortech.2024.130835
  22. Kokou Amega, Laré, Y., Moumouni, Y., Bhandari, R., & Madougou, S. (2022). Development of typical meteorological year for massive renewable energy deployment in Togo. International Journal of Sustainable Energy. https://doi.org/10.1080/14786451.2022.2109026
  23. Koleva, M., Guerra, O. J., Eichman, J., Hodge, B.-M., & Kurtz, J. (2021). Optimal design of solar-driven electrolytic hydrogen production systems within electricity markets. Journal of Power Sources, 483, 229183. https://doi.org/10.1016/j.jpowsour.2020.229183
  24. Lamboni, B., Bazyomo, S. D., Badouc, F. D., Hounkpe, J., Kamou, H., Zakari, D., Banna, M., & Lawin, A. E. (2024). Climate, water, hydropower, wind speed and wind energy potential resources assessments using weather time series data, downscaled regional circulation models: A case study for Mono River Basin in the Gulf of Guinea region. Journal of Renewable Energy. https://doi.org/10.1016/j.renene.2024.120099
  25. Lamboni, B., Lawin, A. E. (2024). Time series analysis and forecasting of streamflow at Nangbeto dam in Mono Basin using stochastic approaches. World Journal of Advanced Research and Reviews, 23(2), 754-762. https://doi.org/10.30574/wjarr.2024.23.2.2375
  26. Lamboni, B., M'po, Y. N., & Lawin, A. E. (2024). Vulnerability of water resources to drought risk and flood prevention in Mono River Basin (Gulf of Guinea Region). International Journal of Advanced Research, 12(07), 347-359. https://dx.doi.org/10.21474/IJAR01/19062
  27. Le, T. T., Jain, A., El-Shafay, A. S., Bora, B. J., Sharma, P., Nguyen, X. P., Duong, X. Q., Maireles Torres, P., & Hoang, A. T. (2025). Comprehensive analysis of waste-to-hydrogen technologies integrated with circular economy principles: Potential and challenges. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2025.01.048
  28. Liu, R., Zheng, Z., Spurgeon, J., & Yang, X. (2014). Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy & Environmental Science, 7, 2504-2517. https://doi.org/10.1039/C4EE00450G
  29. Mahrooz Rezaei, Riksen, M. J. P. M., Sirjani, E., Sameni, A., & Geissen, V. (2019). Wind erosion as a driver for transport of light density microplastics. Science of the Total Environment, 669, 273-281. https://doi.org/10.1016/j.scitotenv.2019.02.382
  30. Mokhtara, C., Negrou, B., Settou, N., Bouferrouk, A., & Yao, Y. (2021). Design optimization of grid-connected PV-Hydrogen for energy prosumers considering sector-coupling paradigm: Case study of a university building in Algeria. International Journal of Hydrogen Energy, 46, 37564-37582. https://doi.org/10.1016/j.ijhydene.2020.10.069
  31. Morya, R., Raj, T., Lee, Y., Kumar Pandey, A., Kumar, D., Rani Singhania, R., Singh, S., Prakash Verma, J., & Kim, S.-H. (2022). Recent updates in biohydrogen production strategies and life-cycle assessment for sustainable future. Bioresource Technology, 366, 128159. https://doi.org/10.1016/j.biortech.2022.128159
  32. Mukelabai, M. D., Wijayantha, U. K. G., & Blanchard, R. E. (2022). Renewable hydrogen economy outlook in Africa. Renewable and Sustainable Energy Reviews, 167, 112705. https://doi.org/10.1016/j.rser.2022.112705
  33. Nguyen, H. H., Bui, V. G., Le, K. B., Nguyen, V. T., & Hoang, A. T. (2025). Economic-environmental analysis of solar-wind-biomass hybrid renewable energy system for hydrogen production: A case study in Vietnam. International Journal of Renewable Energy Development, 14(3), 528-543. https://doi.org/10.61435/ijred.2025.61233
  34. Okonkwo, P. C., Mansir, I. B., Barhoumi, E. M., Emori, W., Radwan, A. B., Shakoor, R. A., Uzoma, P. C., & Pugalenthi, M. R. (2022). Utilization of renewable hybrid energy for refueling station in Al-Kharj, Saudi Arabia. International Journal of Hydrogen Energy, 47, 22273-22284. https://doi.org/10.1016/j.ijhydene.2022.05.040
  35. Presidence togolaise. (2018). Stratégie d'électrification du Togo. https://presidence.gouv.tg/2018/06/27/energieelectrique-pour-tous/
  36. Rahmouni, S., Negrou, B., Settou, N., Dominguez, J., & Gouareh, A. (2017). Prospects of hydrogen production potential from renewable resources in Algeria. International Journal of Hydrogen Energy, 42(2), 1383-1395. https://doi.org/10.1016/j.ijhydene.2016.07.214
  37. Riayatsyah, T. M. I., Geumpana, T. A., Fattah, I. M. R., & Mahlia, T. M. I. (2022). Techno-economic analysis of hybrid diesel generators and renewable energy for a remote island in the Indian Ocean using HOMER Pro. Sustainability, 14(16), 9846. https://doi.org/10.3390/su14169846
  38. Schmitz, O. J., Sylvén, M., & Atwood, T. B. (2023). Trophic rewilding can expand natural climate solutions. Nature Climate Change, 13, 324-333. https://doi.org/10.1038/s41558-023-01631-6
  39. Sengupta, M., Xie, Y., Lopez, A., Habte, A., Maclaurin, G., & Shelby, J. (2018). The national solar radiation data base (NSRDB). Renewable and Sustainable Energy Reviews, 89, 51-60. https://doi.org/10.1016/j.rser.2018.03.003
  40. Snousy, M. G., Abouelmagd, A. R., Moustafa, Y. M., Gamvroula, D. E., Alexakis, D. E., & Ismail, E. (2025). The potential role of Africa in green hydrogen production: A short-term roadmap to protect the world's future from climate crisis. Water, 17(3), 416. https://doi.org/10.3390/w17030416
  41. Sustainable Energy for All (SE4ALL). (2012). Togo renewable energy potential report. Togo Renewable Energy Potential filetype:pdf
  42. Tarhan, C., & Çil, M. A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676. https://doi.org/10.1016/j.est.2021.102676
  43. Touili, S., Alami Merrouni, A., Azouzoute, A., El Hassouani, Y., & Amrani, A. (2018). A technical and economical assessment of hydrogen production potential from solar energy in Morocco. International Journal of Hydrogen Energy, 43, 22777-22796. https://doi.org/10.1016/j.ijhydene.2018.10.136
  44. World Bank. (2021). Access to electricity in West Africa. https://www.worldbank.org/en/search?q=Access+to+electricity+in+West+Africa+2021
  45. Yang, S., Cao, Z., Liu, N., Sun, Y., & Wang, Z. (2024). Correction: Yang et al. Maritime electro-optical image object matching based on improved YOLOv9. Electronics, 13(16), 3107. https://doi.org/10.3390/electronics13163107
  46. Zafar, S., & Khan, A. (2023). Integrated hydrogen fuel cell power system as an alternative to diesel-electric power system for conventional submarines. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.08.370

Last update:

No citation recorded.

Last update: 2025-07-10 06:01:33

No citation recorded.