skip to main content

Electrical performance for in-situ doping of phosphorous in silver paste screen-printed contact on p-type silicon solar cell

1Solar Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

3Faculty of Technical and Vocational, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak Darul Ridzuan, Malaysia

4 Mechanical Engineering, Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

View all affiliations
Received: 11 Nov 2024; Revised: 19 May 2025; Accepted: 1 Jun 2025; Available online: 15 Jun 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This study addresses the challenge of enhancing the efficiency of silicon solar cells by investigating the electrical performance of phosphorus-doped silver (Ag-P) pastes used in screen-printed contacts on p-type silicon wafers. Conventional silver (Ag) pastes serve as conductive contacts but lack the ability to simultaneously doped the emitter region, leading to complex fabrication processes and limiting cell efficiency. To overcome this, we explore an in-situ approach using Ag-based paste and phosphoric acid (H3PO4), which combines emitter doping and contact formation, thereby simplifying fabrication while enhancing performance. In this study, both un-doped and phosphorus-doped Ag pastes were screen-printed onto planar, textured, and silicon dioxide-passivated silicon wafers, followed by annealing at 900°C by using a round quartz tube furnace with 45s in and 45s out with a holding time of the 40s. Electrical performance was measured through light-current-voltage (LIV) and quantum efficiency analyses. According to the short circuit current density (JSC) for only Ag-based paste screen-printed on only one-sided (A) and both-sided (B) indicates a higher JSC value of 9.63 mA/cm2 for A meanwhile, sample B gains 7.54 mA/cm2. For comparison, the JSC values for screen-printed Ag-P on only one side (A) and both sides (B) are 10.4 mA/cm² and 10.4 mA/cm², respectively. Thus, the overall efficiency of Ag-P screen-printed on a one-sided Si wafer was 1.65% higher than that of the rest of the samples. However, the internal quantum efficiency (IQE) and external quantum efficiency (EQE) for Ag-P screen-printed on Si wafer display higher percentages between 80-83% and 63-73% at a wavelength range of 650 to 900 nm than the rest of the samples. The QE measurements reveal that Ag-P paste effectively mitigates surface recombination losses, resulting in higher efficiency and improved charge carrier collection. These findings indicate that Ag-P paste offers a viable alternative to conventional screen-printed contacts by enhancing both device performance and electrical efficiency through integrated doping and contact formation. This work suggests that Ag-P paste could play a vital role in advancing high-performance silicon solar cell technologies.
Fulltext View|Download
Keywords: electrical performance; light-current-voltage; phosphorus-doped; quantum efficiency; silver-based pastes

Article Metrics:

  1. Abid, Z., Wahad, F., Gulzar, S., Ashiq, M. F., Aslam, M. S., Shahid, M., Altaf, M., & Ashraf, R. S. (2023). Solar Cell Efficiency Energy Materials. Fundamentals of Solar Cell Design, 271–315. https://doi.org/10.1002/9781119725022.ch10
  2. Akter, N., Hossion, A., & Amin, N. (2022). Fabrication of Oxide Passivated and Antireflective Thin Film Coated Emitter Layer in Two Steps for the Application in Photovoltaic. 09(03)
  3. Alamri, H. R., Rezk, H., Abd-elbary, H., & Ziedan, H. A. (2020). Experimental Investigation to Improve the Energy Efficiency of Solar PV Panels Using Hydrophobic. Coatings, 10(5)
  4. Andreani, L. C., Bozzola, A., Kowalczewski, P., Liscidini, M., & Redorici, L. (2019). Silicon solar cells: Toward the efficiency limits. Advances in Physics: X, 4(1). https://doi.org/10.1080/23746149.2018.1548305
  5. Antoniadis, H. (2011). High Efficiency , Low Cost Solar Cells Manufactured Using ‘ Silicon Ink ’ on Thin Crystalline Silicon Wafers High Efficiency , Low Cost Solar Cells Manufactured Using ‘ Silicon Ink ’ on Thin Crystalline Silicon Wafers (Issue October 2009). https://docs.nrel.gov/docs/fy11osti/50824.pdf
  6. Basher, M. K., Hossain, M. K., & Akand, M. A. R. (2019). Effect of surface texturization on minority carrier lifetime and photovoltaic performance of monocrystalline silicon solar cell. Optik, 176(July 2018), 93–101. https://doi.org/10.1016/j.ijleo.2018.09.042
  7. Batchu, K., Unsur, V., Ebong, A., Member, S., Batchu, K., Charlotte, U. N. C., Charlotte, U. N. C., Paste, K. W.--A., & Resistance, C. (2015). The Impact of Ag Particle Size and Rapid Thermal Processing Belt Speed on Contact Resistance of a Silicon Solar Cell. IEEE, 43–46
  8. Battaglia, C., Cuevas, A., & De Wolf, S. (2016). High-efficiency crystalline silicon solar cells: Status and perspectives. Energy and Environmental Science, 9(5), 1552–1576. https://doi.org/10.1039/c5ee03380b
  9. Bonilla, R. S., Hoex, B., Hamer, P., & Wilshaw, P. R. (2017). Dielectric surface passivation for silicon solar cells: A review. Physica Status Solidi (A) Applications and Materials Science, 214(7), 1–30. https://doi.org/10.1002/pssa.201700293
  10. Bonilla, R. S., & Wilshaw, P. R. (2014). A technique for field effect surface passivation for silicon solar cells A technique for field effect surface passivation for silicon solar cells. Applied Physics Letters, 104, 232903. https://doi.org/10.1063/1.4882161
  11. Chaudhary, A., Hos, J., Lossen, J., Huster, F., Kopecek, R., Van Swaaij, R., & Zeman, M. (2022). Screen Printed Fire-Through Contact Formation for Polysilicon-Passivated Contacts and Phosphorus-Diffused Contacts. IEEE Journal of Photovoltaics, 12(2), 462–468. https://doi.org/10.1109/JPHOTOV.2022.3142135
  12. Chaudhary, A., Hoß, J., Lossen, J., van Swaaij, R., & Zeman, M. (2021). Advancement in screen printed fire through silver paste metallisation of polysilicon based passivating contacts. AIP Conference Proceedings, 2367(June). https://doi.org/10.1063/5.0055978
  13. Chen, C., Ran, C., Yao, Q., Wang, J., Guo, C., Gu, L., Han, H., Wang, X., Chao, L., Xia, Y., & Chen, Y. (2023). Screen-Printing Technology for Scale Manufacturing of Perovskite Solar Cells. Advanced Science, 10(28). https://doi.org/10.1002/advs.202303992
  14. Chen, Y. L., Lu, G. L., Zhong, S. H., & Shen, W. Z. (2016). SiO 2 Passivation Layer Grown by Liquid Phase Deposition for N-type Bifacial Silicon Solar Cells. MATEC Web of Conferences, 04008(67)
  15. Chowdhury, S., Kumar, M., Dutta, S., Park, J., Kim, J., Kim, S., Ju, M., Kim, Y., Cho, Y., Cho, E.-C., & Yi, J. (2019). High-efficiency Crystalline Silicon Solar Cells: A Review. New & Renewable Energy, 15(3), 36–45. https://doi.org/10.7849/ksnre.2019.3.15.3.036
  16. Dou, B., Jia, R., Xing, Z., Yao, X., Xiao, D., Jin, Z., & Liu, X. (2021). Enhanced performance of nanotextured silicon solar cells with excellent light-trapping properties. Photonics, 8(7). https://doi.org/10.3390/photonics8070272
  17. Eon, D., Umezawa, H., Iwasaki, T., Murooka, T., Hatano, M., Araujo, D., Pernot, J., Kawarada, H., Kato, H., Makino, T., & Koizumi, S. (2018). Device formation and the characterizations. In Power Electronics Device Applications of Diamond Semiconductors. https://doi.org/10.1016/B978-0-08-102183-5.00005-4
  18. Gaubert, P., & Teramoto, A. (2017). Carrier Mobility in Field-Effect Transistors. In Intech (Vol. 11, p. 13). https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
  19. Glatthaar, R., Huster, F., Okker, T., Cela Greven, B., Seren, S., Hahn, G., & Terheiden, B. (2022). Contact Formation of Silver Paste and Atmospheric Pressure Chemical Vapor Deposition (n) Poly-Silicon Passivating Contacts on Planar and Textured Surfaces. Physica Status Solidi (A) Applications and Materials Science, 219(24), 1–8. https://doi.org/10.1002/pssa.202200501
  20. Glunz, S. W., & Feldmann, F. (2018). SiO2 surface passivation layers – a key technology for silicon solar cells. Solar Energy Materials and Solar Cells, 185(February), 260–269. https://doi.org/10.1016/j.solmat.2018.04.029
  21. Goodrich, A., Hacke, P., Wang, Q., Sopori, B., Margolis, R., James, T. L., & Woodhouse, M. (2013). A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs. Solar Energy Materials and Solar Cells, 114, 110–135. https://doi.org/10.1016/j.solmat.2013.01.030
  22. Hamzavy, B. T., & Bradley, alexander Z. (2013). Safety and Performance Analysis of a Commercial Photovoltaic Installation. Proceedings of SPIE, 8825, 1–7. https://doi.org/10.1117/12.2023406
  23. Hirst, L. C. (2012). Principles of Solar Energy Conversion. Comprehensive Renewable Energy, 1, 293–313
  24. Hooten, N. C., Edmonds, L. D., Bennett, W. G., Ahlbin, J. R., Dodds, N. A., Reed, R ASchrimpf, R. D., & Weller, R. A. (2012). The Significance of High-Level Carrier Generation Conditions for Charge Collection in Irradiated Devices. IEEE Transaction on Nuclear Science, 59(6), 2710–2721
  25. Kaya, M., & Hajimirza, S. (2018). Rapid Optimization of External Quantum Efficiency of Thin Film Solar Cells Using Surrogate Modeling of Absorptivity. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-26469-3
  26. Kim, M. S., Lee, J. H., & Kwak, M. K. (2020). Review: Surface Texturing Methods for Solar Cell Efficiency Enhancement. International Journal of Precision Engineering and Manufacturing, 21(7), 1389–1398. https://doi.org/10.1007/s12541-020-00337-5
  27. Kitai, A. (2019). p – n Junction Solar Cells. In Principles of Solar Cells, LEDs and related devices: The role of the PN junction (second edi, pp. 202–257). John Wiley & Sons Ltd
  28. Kulushich, G., Zapf-Gottwick, R., Nguyen, V. X., & Werner, J. H. (2012). Role of phosphorus in contact formation on silicon solar cells. Physica Status Solidi - Rapid Research Letters, 6(9–10), 370–372. https://doi.org/10.1002/pssr.201206298
  29. Lan, C. W., Hsu, C., & Nakajima, K. (2015). Multicrystalline Silicon Crystal Growth for Photovoltaic Applications. In Handbook of Crystal Growth: Bulk Crystal Growth: Second Edition (Second Edi, Vol. 2). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63303-3.00010-9
  30. Larionova, Y., Turcu, M., Reiter, S., Brendel, R., Tetzlaff, D., Krugener, J., Wietler, T., Hohne, U., Kahler, J., & Peibst, R. (2017). On the recombination behavior of p-type polysilicon on oxide junctions deposited by different methods on textured and planar surfaces. Physica Status Solidi (A) Applications and Materials Science, 1700058, 1–5. https://doi.org/10.1002/pssa.201700058
  31. Lee, S.-H., & Heo, S.-Y. (2017). Silver paste composition for forming an electrode, and silicon solar cell using same
  32. Li, H., Kim, K., Hallam, B., Hoex, B., Wenham, S., & Abbott, M. (2017). POCl3 diffusion for industrial Si solar cell emitter formation. Frontiers in Energy, 11(1), 42–51. https://doi.org/10.1007/s11708-016-0433-7
  33. Lorenz, A., Linse, M., Frintrup, H., Jeitler, M., Mette, A., Lehner, M., Greutmann, R., Brocker, H., König, M., Erath, D., & Clement, F. (2018). Screen Printed Thick Film Metallization of Silicon Solar Cells - Recent Developments and Future Perspectives. 35th European Photovoltaic Solar Energy Conference and Exhibition, September, 819–824. https://userarea.eupvsec.org/proceedings/35th-EU-PVSEC-2018/2DV.3.65/
  34. Mandal, N. C., Biswas, S., Acharya, S., Panda, T., Sadhukhan, S., Sharma, J. R., Nandi, A., Bose, S., Kole, A., Das, G., Maity, S., Chaudhuri, P., & Saha, H. (2020). Materials Science in Semiconductor Processing Study of the properties of SiO x layers prepared by different techniques for rear side passivation in TOPCon solar cells. Materials Science in Semiconductor Processing, 119(June), 105163. https://doi.org/10.1016/j.mssp.2020.105163
  35. Meier, D. L., Davis, H. P., Garcia, R. A., Jessup, J. A., & Carroll, A. F. (2000). Self-doping contacts to silicon using silver coated with a dopant source. Conference Record of the IEEE Photovoltaic Specialists Conference, 2000-Janua, 69–74. https://doi.org/10.1109/PVSC.2000.915755
  36. Mohd Ahir, Z. F., Sepeai, S., & H. Zaidi, S. (2018). Optimization of Phosphoric Acid-Based Emitter Formation on Silicon Wafer. Jurnal Kejuruteraan, SI1(3), 9–14. https://doi.org/10.17576/jkukm-2018-si1(3)-02
  37. Mohd Rais, A. R., Mohd Sinin, N. A., Sepeai, S., Ibrahim, M. A., Zaidi, S. H., & Sopian, K. (2022). Analysis of Spectral Transmission in Si Solar Cell with Pyramidal Texturization by Using PC3S Simulation. Silicon. https://doi.org/10.1007/s12633-021-01373-0
  38. Mori, K., Samata, S., Mitsugi, N., Teramoto, A., Kuroda, R., Suwa, T., Hashimoto, K., & Sugawa, S. (2020). Influence of silicon wafer surface roughness on semiconductor device characteristics. Japanese Journal of Applied Physics, 59, SMMB06
  39. Muduli, sakti prasanna, & Kale, P. (2023). State-of-the-art passivation strategies of c-Si for photovoltaic applications: A review. Materials Science in Semiconductor Processing, 154, 107202. https://doi.org/10.1016/j.mssp.2022.107202
  40. Nawaz, A., Tahir, S., Ali, A., Arshad, M. I., Mahmood, K., Siraj, S., & Muddassir, Y. (2020). Effect of phosphorous/boron doping profile differences on the performance of silicon solar cells. Journal of Ovonic Research, 16(1), 63–70
  41. Oh, K. suk, Bae, S., Lee, K. jin, Kim, D., & Chan, S. il. (2019). Mitigation of potential-induced degradation (PID) based on anti-reflection coating (ARC) structures of PERC solar cells. Microelectronics Reliability, 100–101(May), 113462. https://doi.org/10.1016/j.microrel.2019.113462
  42. Poncé, S., Li, W., Reichardt, S., & Giustino, F. (2020). First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials. Reports on Progress in Physics, 83(3). https://doi.org/10.1088/1361-6633/ab6a43
  43. Porter, L. M., Teicher, A., & Meier, D. L. (2002). Phosphorus-doped, silver-based pastes for self-doping ohmic contacts for crystalline silicon solar cells. Solar Energy Materials and Solar Cells, 73(2), 209–219. https://doi.org/10.1016/S0927-0248(01)00126-X
  44. Proul, A. (2023). Understanding the p-n Junction. Solar Cells: Resource for the Secondary Science Teacher, 13–24
  45. Qi, B., & Wang, J. (2013). Fill factor in organic solar cells. Physical Chemistry Chemical Physics, 15(23), 8972–8982. https://doi.org/10.1039/c3cp51383a
  46. Rahman, M. Z., & Khan, S. I. (2012). Advances in surface passivation of c-Si solar cells. Mater Renew Sustain Energy, 1–11. https://doi.org/10.1007/s40243-012-0001-y
  47. Razeghi, M. (2009). PN and Metal-Semiconductor Junctions. In Fundamentals of Solid State Engineering. https://doi.org/10.1007/978-0-387-92168-6_9
  48. Rujhan, A., Rais, M., Aqidah, N., Sinin, M., Rohaizar, M. H., Ibrahim, M. A., Sopian, K., & Sepeai, S. (2024). Phosphorus Activation via Screen Printing Ag / P on Thermally Grown SiO 2 Layer as Passivating Contact on n-Si. Journal of Physical Science, 35(3), 65–80
  49. Salemi, S., Potbhare, A. A. S., Lelis, A., & Goldsman, N. (2011). The Effects of Different Silicon Carbide – Silicon Dioxide Interface Passivations on Transition Region Mobility and Transport. Int. Semiconductor Devuice Research Symposium, 10–11
  50. Savadogo, M., Soro, B., Konate, R., Sourabié, I., Zoungrana, M., Zerbo, I., & Joseph Bathiebo, D. (2020). Temperature Effect on Light Concentration Silicon Solar Cell’s Operating Point and Conversion Efficiency. Smart Grid and Renewable Energy, 11(05), 61–72. https://doi.org/10.4236/sgre.2020.115005
  51. Sepeai, S., Sulaiman, M. Y., & Sopian, K. (2011). Optimization of rapid thermal firing on silver metal contact for crystalline silicon solar cells. AIP Conference Proceedings, 1328(2011), 196–198. https://doi.org/10.1063/1.3573727
  52. Serenelli, L., Martini, L., Menchini, F., Izzi, M., & M. Tucci. (2023). Open circuit voltage reduction due to recombination at the heterojunction solar cell edge. Solar Energy, 258, 2–7. https://doi.org/10.1016/j.solener.2023.04.027
  53. Shanmugam, V., Cunnusamy, J., Khanna, A., Basu, P. K., Zhang, Y., Chen, C., Stassen, A. F., Boreland, M. B., Mueller, T., Hoex, B., & Aberle, A. G. (2014). Electrical and microstructural analysis of contact formation on lightly doped phosphorus emitters using thick-film ag screen printing pastes. IEEE Journal of Photovoltaics, 4(1), 168–174. https://doi.org/10.1109/JPHOTOV.2013.2291313
  54. Shanmugam, V., Khanna, A., Basu, P. K., Aberle, A. G., Mueller, T., & Wong, J. (2016). Impact of the phosphorus emitter doping profile on metal contact recombination of silicon wafer solar cells. Solar Energy Materials and Solar Cells, 147, 171–176. https://doi.org/10.1016/j.solmat.2015.12.006
  55. Sheng, J., Ma, Z., Cai, W., Ma, Z., Ding, J., Yuan, N., & Zhang, C. (2019). Impact of phosphorus diffusion on n-type poly-Si based passivated contact silicon solar cells. Solar Energy Materials and Solar Cells, 203(March), 110120. https://doi.org/10.1016/j.solmat.2019.110120
  56. Sinin, N. A. M., Rais, A. R. M., Sopian, K., & Ibrahim, M. A. (2023). The concentration factor on the mixture of Ag paste and H3 PO4 solution as a dopant paste for contact formation in silicon solar cells. Journal of Ovonic Research, 19(6), 681–694. https://doi.org/10.15251/JOR.2023.196.681
  57. Skromme, B. J. (2003). Junctions and Barriers. Encyclopedia of Materials: Science and Technology, 1–12. https://doi.org/10.1016/b0-08-043152-6/01896-9
  58. Sopian, K., Cheow, S. L., & Zaidi, S. H. (2017). An overview of crystalline silicon solar cell technology: Past, present, and future. AIP Conference Proceedings, 1877(September). https://doi.org/10.1063/1.4999854
  59. Sui, M., Chu, Y., & Zhang, R. (2021). A review of technologies for high efficiency silicon solar cells. Journal of Physics: Conference Series, 1907(1). https://doi.org/10.1088/1742-6596/1907/1/012026
  60. Tepner, S., & Lorenz, A. (2023). Printing technologies for silicon solar cell metallization : A comprehensive review. Progress in Photovoltaics: Research and Applications, 31, 557–590. https://doi.org/10.1002/pip.3674
  61. Tepner, S., Ney, L., Singler, M., Preu, R., & Pospischil, M. (2021). A model for screen utility to predict the future of printed solar cell metallization. Nature, 11, 1–13. https://doi.org/10.1038/s41598-021-83275-0
  62. Thibert, S., Jourdan, J., Bechevet, B., Chaussy, D., Reverdy-bruas, N., & Beneventi, D. (2014). Influence of silver paste rheology and screen parameters on the front side metallization of silicon solar cell. Materials Science in Semiconductor Processing, 27, 790–799. https://doi.org/10.1016/j.mssp.2014.08.023
  63. Tripathi, B., Mahapatra, A., Verma, D., Kalam, A., Pandey, M. K., Trivedi, S., & Kumar, M. (2020). Electro-analytical comparison of commercial mono-crystalline silicon and PERC solar cells to maximize performance Electro-analytical comparison of commercial mono-crystalline silicon and PERC solar cells to maximize performance. Engineering Research Express, 2, 040518. https://doi.org/10.1088/2631-8695/abc362
  64. Turkay, D., Koroglu, C., & Yerci, S. (2019). Analysis of Field-Effect Passivation in Textured and Undiffused Silicon Surfaces. Physical Review Applied, 12(3), 1. https://doi.org/10.1103/PhysRevApplied.12.034026
  65. Unsur, V., Chowdhury, A., Chen, N., & Ebong, A. (2015). The Effects ofNano Ag Particles on Gridline Sintering for Silicon Solar Cells. IEEE, 1–5
  66. Wu, W., Roelofs, K. E., Subramoney, S., Lloyd, K., & Zhang, L. (2017). Role of aluminum in silver paste contact to boron-doped silicon emitters. AIP Advances, 7(1). https://doi.org/10.1063/1.4974752
  67. Wurfel, U., Cuevas, A., & Peter, W. (2015). Charge Carrier Separation in Solar Cells. IEEE Journal of Photovoltaics, 5(1), 461–469
  68. Xing, B., Tu, Y., Yao, J., Niu, X., Yan, X., Liu, Y., Wu, X., Li, M., Guo, W., Sha, J., & Wang, Y. (2020). surface charge transfer doping and effect passivation of black phosphorus field effect transistor. Journal of Materials Chemistry C, 1–25. https://doi.org/10.1039/D0TC00740D
  69. Xu, X., Wu, W., & Wang, Q. (2023). Efficiency Improvement of Industrial Silicon Solar Cells by the POCl3 Diffusion Process. Materials, 16(5). https://doi.org/10.3390/ma16051824
  70. Yang, P., Zeng, X., Xie, X., Zhang, X., Li, H., & Wang, Z. (2013). Improved open-circuit voltage of silicon nanowires solar cells by surface passivation. RSC Advances, 3(47), 24971–24974. https://doi.org/10.1039/c3ra42823k
  71. Yang, W. J., Ma, Z. Q., Tang, X., Feng, C. B., Zhao, W. G., & Shi, P. P. (2008). Internal quantum efficiency for solar cells. Solar Energy, 82(2), 106–110. https://doi.org/10.1016/j.solener.2007.07.010
  72. Yüce, C., Okamoto, K., Karpowich, L., Adrian, A., & Willenbacher, N. (2019). Non-volatile free silver paste formulation for front-side metallization of silicon solar cells. Solar Energy Materials and Solar Cells, 200. https://doi.org/10.1016/j.solmat.2019.110040
  73. Zanesco, I., Crestani, T., Moehlecke, A., & Ly, M. (2019). Analysis of different conductive pastes to form the contact with the boron back surface field in PERT silicon solar cells. Materials Research Express, 6(11). https://doi.org/10.1088/2053-1591/ab4b99
  74. Zhang, S., Yao, Y., Hu, D., Lian, W., Qian, H., Jie, J., Wei, Q., Ni, Z., Zhang, X., & Xie, L. (2019). Application of silicon oxide on high efficiency monocrystalline silicon PERC solar cells. Energies, 12(6), 1–11. https://doi.org/10.3390/en12061168
  75. Zhou, L., Bo, B., Yan, X., Wang, C., Chi, Y., & Yang, X. (2018). Brief Review of Surface Passivation on III-V Semiconductor. Crystals, 8(226), 1–14. https://doi.org/10.3390/cryst8050226
  76. Zhou, Y. (2013). Eco- and Renewable Energy Materials (Y. Zhou (ed.)). Springer Heidelberg New York Dordrecht London
  77. Zhuang, Y. F., Zhong, S. H., Liang, X. J., Kang, H. J., Li, Z. P., & Shen, W. Z. (2019). Application of SiO 2 passivation technique in mass production of silicon solar cells. Solar Energy Materials and Solar Cells, 193(January), 379–386. https://doi.org/10.1016/j.solmat.2019.01.038

Last update:

No citation recorded.

Last update: 2025-07-11 18:11:22

No citation recorded.