skip to main content

Parametric and characteristic evaluation of microwave-assisted pyrolysis for the generation of biochar from Dodonaea viscosa branches

1Department of Chemical Engineering, College of Engineering, University of Tikrit, Iraq

2Department of Chemical Engineering, College of Engineering, University of Baghdad, Iraq

Received: 8 Mar 2025; Revised: 17 May 2025; Accepted: 31 May 2025; Available online: 14 Jun 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This investigation focused on assessing the feasibility of biochar production through microwave pyrolysis of Dodonaea viscosa branches. It considered the role of various important parameters, such as the power levels, biomass particle sizes, and the duration of pyrolysis, on both the yield and the quality of the obtained biochar. The assessment was conducted within a 25-minute pyrolysis time frame. The study also looked at how the yield of biochar changed over time. The results showed that the maximum biochar yield was obtained under conditions where the biomass particles were large (2–2.5 mm) and the power levels low (130 W). However, the yield was reduced when the biomass particles (0.5–1 mm) under higher power (650 W) were used. It was found that the yield of particles 2–2.5 mm dropped from 82% for 5 minutes at 130 W to 49.8% for 25 minutes. Further research has examined the dynamics of power variation on biochar characteristics. Several types of analysis were used to find out the surface area and pore volume. These included energy dispersive X-ray spectrometry (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrophotometry (FTIR), and Brunauer-Emmett-Teller (BET) analysis. The EDX analysis showed an increment in carbon to 89.7%, accompanied by a decrease in oxygen percentage to 4.9% under higher power. The SEM scan showed a tremendous improvement in pore formation corresponding to higher power. The XRD test showed that biochar went from being crystalline to being amorphous when compared to the native Dodonaea viscosa branch. At 520 W for 25 minutes, the surface area increased from 3.034 m²/g to 21.634 m²/g, while the pore diameter increased from 2.653 nm to 13.215 nm, showing an improvement in pore density. The results realized that the biochar obtained from microwave pyrolysis of Dodonaea viscosa branches has certain characteristics that make it useful for several purposes, like electricity production, water and gas treatment, soil improvement, and carbon dioxide gas reduction.
Fulltext View|Download
Keywords: biomass; Dedonea branch; microwave-assistant pyrolysis; biochar; characterization

Article Metrics:

  1. Abbas, A. S., Ahmed, M. J., & Darweesh, T. M. (2016). Adsorption of fluoroquinolones antibiotics on activated carbon by K2CO3 with microwave assisted activation. Iraqi Journal of Chemical and Petroleum Engineering, 17(2), 15-23.‏ ‏ https://doi.org/10.31699/IJCPE.2016.2.3
  2. Abd, M. F., & Al-Yaqoobi, A. M. (2023). The feasibility of utilizing microwave-assisted pyrolysis for Albizia branches biomass conversion into biofuel productions. International Journal of Renewable Energy Development, 12(6).‏ https://doi.org/10.14710/ijred.2023.56907
  3. Abd, M. F., & AL-yaqoobi, A. M. (2025). The potential significance of microwave-assisted catalytic pyrolysis for valuable bio-products driven from Albizia tree. Applied Science and Engineering Progress, 18(1), 7454-7454.‏ https://doi.org/10.14416/j.asep.2024.07.016
  4. Abd, M. F., Al-yaqoobi, A. M., & Abdul-Majeed, W. S. (2024). Catalytic microwave pyrolysis of Albizia Branches using iraqi bentonite clays. Iraqi Journal of Chemical and Petroleum Engineering, 25(2), 175-186. https://doi.org/10.31699/IJCPE.2024.2.16
  5. Ahmed, M. J. (2019). Enhanced conversion of Glycerol-to-Glycerol carbonate on modified Bio-Char from reed plant. Iraqi Journal of Chemical and Petroleum Engineering, 20(4), 15-20.‏ https://doi.org/10.31699/IJCPE.2019.4.3
  6. Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource technology, 118, 536-544.‏ https://doi.org/10.1016/j.biortech.2012.05.042
  7. Antonangelo JA, Zhang H, Sun X, Kumar A (2019) Physicochemical properties and morphology of biochar as afected by feedstock sources and pyrolysis temperatures. Biochar 1:325–336. https://doi.org/10.1007/s42773-019-00028-z
  8. Azni, A. A., Ghani, W. A. W. A. K., Idris, A., Ja’afar, M. F. Z., Salleh, M. A. M., & Ishak, N. S. (2019). Microwave-assisted pyrolysis of EFB-derived biochar as potential renewable solid fuel for power generation: Biochar versus sub-bituminous coal. Renewable Energy, 142, 123-129.‏ https://doi.org/10.1016/j.renene.2019.04.035
  9. Bielecki, M., & Zubkova, V. (2023). Analysis of interactions occurring during the pyrolysis of lignocellulosic biomass. Molecules, 28(2), 506.‏ https://doi.org/10.3390/molecules28020506
  10. Campbell, R. M., Anderson, N. M., Daugaard, D. E., & Naughton, H. T. (2018). Financial viability of biofuel and biochar production from forest biomass in the face of market price volatility and uncertainty. Applied energy, 230, 330-343.‏ https://doi.org/10.1016/j.apenergy.2018.08.085
  11. Castañeda-Espinoza, J., Salinas-Sánchez, D. O., Mussali-Galante, P., Castrejón-Godínez, M. L., Rodríguez, A., González-Cortazar, M., ... & Tovar-Sánchez, E. (2023). D odonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines. Environmental Science and Pollution Research, 30(2),2509-2529.‏ https://doi.org/10.1007/s11356-022-22374-5
  12. Chen W (2019) Inaugural editorial: pioneering the innovation and exploring the future for biochar technology. Biochar 1, 1–1. https://doi.org/10.1007/s42773-019-00010-9
  13. Chen, C., Yang, L., Zhang, X., Zhao, C., Sun, J., Li, G., & Shi, H. (2024). Advances and prospects of multifunctional biochar-based materials from organic solid waste of traditional Chinese medicine: A review. Biomass and Bioenergy, 187, 107296.‏ https://doi.org/10.1016/j.biombioe.2024.107296
  14. Cheng, J., Hu, S. C., Sun, G. T., Geng, Z. C., & Zhu, M. Q. (2021). The effect of pyrolysis temperature on the characteristics of biochar, pyroligneous acids, and gas prepared from cotton stalk through a polygeneration process. Industrial Crops and Products, 170, 113690.‏ https://doi.org/10.1016/j.indcrop.2021.113690
  15. Conte, P., Bertani, R., Sgarbossa, P., Bambina, P., Schmidt, H. P., Raga, R., ... & Lo Meo, P. (2021). Recent developments in understanding biochar’s physical chemistry. Agronomy, 11(4), 615.‏ https://doi.org/10.3390/agronomy11040615
  16. Dai, F., Zhuang, Q., Huang, G., Deng, H., & Zhang, X. (2023). Infrared spectrum characteristics and quantification of OH groups in coal. ACS omega, 8(19), 17064-17076.‏: https://doi.org/10.1021/acsomega.3c01336
  17. Do Nascimento, V. R., dos Santos, M. B., Diehl, L., Paniz, J. N. G., de Castilhos, F., & Bizzi, C. A. (2024). Microwave-assisted pyrolysis of pine wood waste: system development, biofuels production, and characterization. Journal of Analytical and Applied Pyrolysis, 106799.‏ https://doi.org/10.1016/j.jaap.2024.106799
  18. Fan, S., Cui, L., Li, H., Guang, M., Liu, H., Qiu, T., & Zhang, Y. (2023). Value-added biochar production from microwave pyrolysis of peanut shell. International Journal of Chemical Reactor Engineering, 21(8), 1035-1046.‏ https://doi.org/10.1515/ijcre-2023-0005
  19. Fernández, I., Pérez, S. F., Fernández-Ferreras, J., & Llano, T. (2024). Microwave-assisted pyrolysis of forest biomass. Energies, 17(19), 4852.‏ https://doi.org/10.3390/en17194852
  20. Guo, H., Qin, X., Cheng, S., Xing, B., Jiang, D., Meng, W., & Xia, H. (2023). Production of high-quality pyrolysis product by microwave–assisted catalytic pyrolysis of wood waste and application of biochar. Arabian Journal of Chemistry, 16(8), 104961.‏ https://doi.org/10.1016/j.arabjc.2023.104961
  21. Hadiyanto, H., Azimatun Nur, M. M., & Hartanto, G. D. (2012). Cultivation of Chlorella sp. as Biofuel Sources in Palm Oil Mill Effluent (POME). International Journal of Renewable Energy Development, 1(2), 45-49
  22. Jamilatun, S., Budhijanto, B., Rochmadi, R., Yuliestyan, A., Hadiyanto, H., & Budiman, A. (2019). Comparative analysis between pyrolysis products of Spirulina platensis biomass and its residues. International Journal of Renewable Energy Development, 8(2), 133-140. https://doi.org/10.14710/ijred.8.2.133-140
  23. Ke, L., Zhou, N., Wu, Q., Zeng, Y., Tian, X., Zhang, J., ... & Wang, Y. (2024). Microwave catalytic pyrolysis of biomass: a review focusing on absorbents and catalysts. npj Materials Sustainability, 2(1), 24.‏ https://doi.org/10.1038/s44296-024-00027-7
  24. Khelfa, A., Rodrigues, F. A., Koubaa, M., & Vorobiev, E. (2020). Microwave-assisted pyrolysis of pine wood sawdust mixed with activated carbon for bio-oil and bio-char production. Processes, 8(11), 1437.‏ https://doi.org/10.3390/pr8111437
  25. Khawkomol, S., Neamchan, R., Thongsamer, T., Vinitnantharat, S., Panpradit, B., Sohsalam, P., ... & Mrozik, W. (2021). Potential of biochar derived from agricultural residues for sustainable management. Sustainability, 13(15), 8147.‏ https://doi.org/10.3390/su13158147
  26. Kumar, A., Joseph, S., Tsechansky, L., Privat, K., Schreiter, I. J., Schüth, C., & Graber, E. R. (2018). Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties. Science of the Total Environment, 626, 953-961.‏ https://doi.org/10.1016/j.scitotenv.2018.01.157
  27. Kumar, D., Yadav, K. K., & Gupta, N. (2022). Phytoremediation potential of Dodonaea v.: A sustainable approach to metal-contaminated soils. Environmental Science and Pollution Research, 29, 23456–23468. https://doi.org/10.1007/s11356-022-22374-5
  28. Kuo, L. A., Tsai, W. T., Yang, R. Y., & Tsai, J. H. (2023). Production of high-porosity biochar from rice husk by the microwave pyrolysis process. Processes, 11(11), 3119.‏ https://doi.org/10.3390/pr11113119
  29. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. (2021). Biochar effects on soil biota – A review. Soil Biology and Biochemistry, 43(9), 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
  30. Lehmann, J., & Joseph, S. (2015). Biochar for Environmental Management: Science, Technology and Implementation. Routledge. https://doi.org/10.4324/9780203762264
  31. Li, J., Dai, J., Liu, G., Zhang, H., Gao, Z., Fu, J., ... & Huang, Y. (2016). Biochar from microwave pyrolysis of biomass: A review. Biomass and Bioenergy, 94, 228-244.‏ https://doi.org/10.1016/j.biombioe.2016.09.010
  32. Li, J., Lin, L., Ju, T., Meng, F., Han, S., Chen, K., & Jiang, J. (2024). Microwave-assisted pyrolysis of solid waste for production of high-value liquid oil, syngas, and carbon solids: A review. Renewable and Sustainable Energy Reviews, 189, 113979.‏ https://doi.org/10.1016/j.rser.2023.113979
  33. Li, X., Peng, B., Liu, Q., & Zhang, H. (2022). Microwave pyrolysis coupled with conventional pre-pyrolysis of the stalk for syngas and biochar. Bioresource Technology, 348, 126745.‏ https://doi.org/10.1016/j.biortech.2022.126745
  34. Liu, L., Gou, G., Liu, J., Zhang, X., Zhu, Q., Mou, J., ... & He, Q. (2022). Effects of Dodonaea v. afforestation on soil nutrients and aggregate stability in Karst Graben Basin. Land, 11(8),1140.‏ https://doi.org/10.3390/land11081140
  35. Lin, J., Ma, R., Luo, J., Sun, S., Cui, C., Fang, L., & Huang, H. (2020). Microwave pyrolysis of food waste for high-quality syngas production: Positive effects of a CO2 reaction atmosphere and insights into the intrinsic reaction mechanisms. Energy Conversion and Management, 206, 112490.‏ https://doi.org/10.1016/j.enconman.2020.112490
  36. Liu, C., Qiu, T., Mostafa, E., Liu, H., Zhao, W., & Zhang, Y. (2024). Porous biochar production from pyrolysis of corn straw in a microwave heated reactor. International Journal of Chemical Reactor Engineering, 22(3), 267-276.‏ https://doi.org/10.1515/ijcre-2023-0128
  37. Lu, H., Xie, R., Almoallim, H. S., Alharbi, S. A., Jhanani, G. K., Praveenkumar, T. R., ... & Xia, C. (2023). Utilization of the Nannochloropsis microalgae biochar prepared via microwave assisted pyrolysis on the mixed biomass fuel pellets. Environmental Research, 231, 116078.‏ https://doi.org/10.1016/j.envres.2023.116078
  38. Mahmood, S. S., & Al-Yaqoobi, A. M. (2024). Production of biodiesel by using CaO nano-catalyst synthesis from mango leaves extraction. International Journal of Renewable Energy Development, 13(6), 1025-1034.‏ https://doi.org/10.61435/ijred.2024.60469
  39. Mahmood, S. S., & AL-Yaqoobi, A. M. (2025). Microwave assisted production of biodiesel using CaO nano-catalyst produced from mango fallen leaves extract. Journal of Ecological Engineering, 26(1). https://doi.org/10.12911/22998993/195650
  40. Majeed, N. S., Sabbar, H. A., & Al-Musawi, N. O. (2017). Preparation activated carbon from scrap tires by microwave assisted KOH activation for removal emulsified oil. Iraqi Journal of Chemical and Petroleum Engineering, 18(1), 57-69.‏
  41. Neha S, Rajput P, Remya N. Biochar from microwave co-pyrolysis of food waste and polyethylene using different microwave susceptors - Production, modification and application for metformin removal. Environ Res. 210, 112922. https://doi.org/10.1016/j.envres.2022.112922
  42. Oginni, O., & Singh, K. (2020). Influence of high carbonization temperatures on microstructural and physicochemical characteristics of herbaceous biomass derived biochar. Journal of Environmental Chemical Engineering, 8(5),104169.‏ https://doi.org/10.1016/j.jece.2020.104169
  43. Paikamnam, A., Clowutimon, W., Chanpee, S., Sriprom, P., & Assawasaengrat, P. (2021, September). Production of empty palm bunch biochar using microwave-assisted pyrolysis at low temperature. AIP Conference Proceedings, 2397(1). AIP Publishing. https://doi.org/10.1063/5.0064053
  44. Patwardhan, S. B., Pandit, S., Gupta, P. K., Jha, N. K., Rawat, J., Joshi, H. C., ... & Kesari, K. K. (2022). Recent advances in the application of biochar in microbial electrochemical cells. Fuel, 311, 122501.‏ https://doi.org/10.1016/j.fuel.2021.122501
  45. Popescu C, Popescu M, Singurel G et al (2018) Spectral characterization of eucalyptus wood. Soc Appl Spectrosc 61:1–17. https://doi.org/10.1366/000370207782597076
  46. Potnuri, R., & Rao, C. S. (2024). Synthesis and Characterization of Biochar Obtained from Microwave-Assisted Copyrolysis of Torrefied Sawdust and Polystyrene. ACS Sustainable Resource Management, 1(9), 2074-2085.‏ https://doi.org/10.1021/acssusresmgt.4c00195
  47. Pusceddu, E., Montanaro, A., Fioravanti, G., Santilli, S. F., Foscolo, P. U., Criscuoli, I., ... & Miglietta, F. (2017). Comparison between ancient and fresh biochar samples, a study on the recalcitrance of carbonaceous structures during soil incubation. Int. J. New Technol. Res, 3, 39-46.‏
  48. Qiu, T., Li, C., Guang, M., & Zhang, Y. (2023). Porous carbon material production from microwave-assisted pyrolysis of peanut shell. Carbon Research, 2(1), 45.‏ https://doi.org/10.1007/s44246-023-00079-9
  49. Qiu, T., Liu, C., Cui, L., Liu, H., Muhammad, K., & Zhang, Y. (2023). Comparison of corn straw biochar from electrical pyrolysis and microwave pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(1), 636-649.‏ https://doi.org/10.1080/15567036.2023.2172484
  50. Quillope, J. C. C., Carpio, R. B., Gatdula, K. M., Detras, M. C. M., & Doliente, S. S. (2021). Optimization of process parameters of self-purging microwave pyrolysis of corn cob for biochar production. Heliyon, 7(11).‏ https://doi.org/10.1016/j.heliyon.2021.e08417
  51. Reza MS, Ahmed A, Caesarendra W et al (2019a) Acacia Holosericea : an invasive species for bio-char, bio-oil and biogas production. Bioengineering, 6, 33. https://doi.org/10.3390/bioen gineering6020033
  52. Reza MS, Islam SN, Afroze S et al (2019b) Evaluation of the bioenergy potential of invasive Pennisetum purpureum through pyrolysis and thermogravimetric analysis. Energy, Ecol Environ. https://doi.org/10.1007/s40974-019-00139-0
  53. Sadegh, F., Sadegh, N., Wongniramaikul, W., Apiratikul, R., & Choodum, A. (2023). Adsorption of volatile organic compounds on biochar: A review. Process Safety and Environmental Protection.‏ https://doi.org/10.1016/j.psep.2023.11.071
  54. Sandhya Rani, M., Pippalla, R. S., & Mohan, K. (2009). Dodonaea v. Linn.an overview. Asian J. Pharm. Res. Healthcare, 1, 97-112.‏ http://api.semanticscholar.org
  55. Siipola, V., Pflugmacher, S., Romar, H., Wendling, L., & Koukkari, P. (2020). Low-cost biochar adsorbents for water purification including microplastics removal. Applied sciences, 10(3), 788.‏ https://doi.org/10.3390/app10030788
  56. Shakir, S. W., Hussein, S. S., Khazaal, S. H., Al-Naseri, H. A., Ahmed, A. M., Hachim, R. N., & Al-Dahhan, M. H. (2024). Examination and Improvement of the Taguchi-Based Nanofluids Impact on CO2 Absorption using Al2O3 Nanoparticles.‏ Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 120(1), 204–216. https://doi.org/10.37934/arfmts.120.1.204216
  57. Shi, K., Yan, J., Menéndez, J. A., Luo, X., Yang, G., Chen, Y., ... & Wu, T. (2020). Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming. Frontiers in chemistry, 8, 3.‏ https://doi.org/10.3389/fchem.2020.00003
  58. Song, B., Almatrafi, E., Tan, X., Luo, S., Xiong, W., Zhou, C., ... & Gong, J. (2022). Biochar-based agricultural soil management: An application-dependent strategy for contributing to carbon neutrality. Renewable and Sustainable Energy Reviews, 164, 112529.‏ https://doi.org/10.1016/j.rser.2022.112529
  59. Suresh, A., Alagusundaram, A., Kumar, P. S., Vo, D. V. N., Christopher, F. C., Balaji, B., ... & Sankar, S. (2021). Microwave pyrolysis of coal, biomass and plastic waste: a review. Environmental Chemistry Letters, 19, 3609-3629
  60. Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125, 70–85. https://doi.org/10.1016/j.chemosphere.2014.12.058
  61. Tayibi S, Monlau F, Oukarroum A, Zeroual Y (2020) One-pot activation and pyrolysis of Moroccan Gelidium ses quipedale red macroalgae residue: production of an efcient adsorbent biochar. Biochar 1:401–412. https://doi.org/10.1007/s42773-019-00033-2
  62. Traoré M, Kaal J, Cortizas AM (2015) Application of FTIR spectroscopy to the characterization of archeological wood. SAA 153:63– 70. https://doi.org/10.1016/j.saa.2015.07.108
  63. Tsai, W. T., Kuo, L. A., Tsai, C. H., Huang, H. L., Yang, R. Y., & Tsai, J. H. (2023). Production of Porous Biochar from Cow Dung Using Microwave Process. Materials, 16(24), 7667.‏ https://doi.org/10.3390/ma16247667
  64. Tsai, W. T., Lee, M. K., & Chang, Y. M. (2006). Fast pyrolysis of rice husk: Product yields and compositions. Bioresource Technology, 98(1), 22–28. https://doi.org/10.1016/j.biortech.2005.01.016
  65. Uday, V., Harikrishnan, P. S., Deoli, K., Zitouni, F., Mahlknecht, J., & Kumar, M. (2022). Current trends in production, morphology, and real-world environmental applications of biochar for the promotion of sustainability. Bioresource Technology, 359, 127467.‏ https://doi.org/10.1016/j.biortech.2022.127467
  66. Wang, S., Su, D., Xu, W. (2022). Vegetation restoration with Dodonaea v. improves soil nutrients and aggregate stability in a degraded karst ecosystem. Land, 11(8), 1140. https://doi.org/10.3390/land11081140
  67. Wang Y, Ke L, Peng Y et al (2020a) Ex-situ catalytic fast pyrolysis of soapstock for aromatic oil over microwave-driven HZSM-5@SiC ceramic foam[J]. Chem Eng J 402, 126239. https://doi.org/10.1016/j.cej.2020.126239
  68. Widayat, W., Darmawan, T., Hadiyanto, H., Rosyid, R.Ar.(2017). Preparation of Heterogeneous CaO Catalysts for Biodiesel Production. Journal of Physics Conference Series, 877(1), 012018. https://doi.org/10.1088/1742-6596/877/1/012018
  69. Xie, C., Yuan, L., Tan, H., Zhang, Y., Zhao, M., & Jia, Y. (2021). Experimental study on the water purification performance of biochar-modified pervious concrete. Construction and Building Materials, 285, 122767.‏ https://doi.org/10.1016/j.conbuildmat.2021.122767
  70. Xu, X., Guo, Y., Shi, R., Chen, H., Du, Y., Liu, B., ... & Li, L. (2021). Natural Honeycomb-like structure cork carbon with hierarchical Micro-Mesopores and N-containing functional groups for VOCs adsorption. Applied surface science, 565, 150550.‏ https://doi.org/10.1016/j.apsusc.2021.150550
  71. Yahya, S. A., Iqbal, T., Omar, M. M., & Ahmad, M. (2021). Techno-economic analysis of fast pyrolysis of date palm waste for adoption in Saudi Arabia. Energies, 14(19), 6048.‏ https://doi.org/10.3390/en14196048
  72. Yang, C., Shang, H., Li, J., Fan, X., Sun, J., & Duan, A. (2023). A review on the microwave-assisted pyrolysis of waste plastics. Processes, 11(5), 1487.‏ https://doi.org/10.3390/pr11051487
  73. Zafeer, M. K., Menezes, R. A., Venkatachalam, H., & Bhat, K. S. (2024). Sugarcane bagasse-based biochar and its potential applications: a review. Emergent Materials, 7(1), 133-161.‏ https://doi.org/10.1007/s42247-023-00603-y
  74. Zhang J, You C (2013) Water holding capacity and absorption properties of wood chars. Energy Fuels, 27,2643–2648. https://doi. org/10.1021/ef4000769
  75. Zhang, J., Liu, J., Liu, R., (2015a). Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate. Bioresour. Technol. 176, 288–291. https://doi.org/10.1016/j.biortech.2014.11.011
  76. Zhang, Y., Fan, S., Liu, T., Fu, W., & Li, B. (2022). A review of biochar prepared by microwave-assisted pyrolysis of organic wastes. Sustainable Energy Technologies and Assessments, 50, 101873.‏ https://doi.org/10.1016/j.seta.2021.101873
  77. Zhou, Y., Qin, S., Verma, S., Sar, T., Sarsaiya, S., Ravindran, B., ... & Awasthi, M. K. (2021). Production and beneficial impact of biochar for environmental application: a comprehensive review. Bioresource Technology, 337, 125451. ‏ https://doi.org/10.1016/j.biortech.2021.125451
  78. Zhu, L., Lei, H., Wang, L., Yadavalli, G., Zhang, X., Wei, Y., ... & Ahring, B. (2015). Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. Journal of Analytical and Applied Pyrolysis, 115, 149-156.‏ https://doi.org/10.1016/j.jaap.2015.07.012

Last update:

No citation recorded.

Last update: 2025-07-10 13:17:36

No citation recorded.