skip to main content

Bio-briquettes from tea fluff biochar: a response surface methodology study on particle size, resin gum-adhesive, and used cooking oil immersion time

1Department of Physics, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jalan A. Yani Km 37.5, Banjarbaru, South Kalimantan, Indonesia

2Research Center for Chemistry - National Research and Innovation Agency (BRIN), Building 456, KST BJ. Habibie, Serpong, South Tangerang, Indonesia

3Department of Environmental Engineering, Faculty of Engineering, Lambung Mangkurat University, Jalan A. Yani Km 37.5, Banjarbaru, South Kalimantan, Indonesia

4 Tea and Kina Research Center, Gambung, Mekarsari Village, Pasirjambu District, Bandung Regency, Indonesia

View all affiliations
Received: 20 Nov 2024; Revised: 17 May 2025; Accepted: 10 Jun 2025; Available online: 2 Jul 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Fluff tea is the residual solid waste generated in the green tea industry and holds the potential for development as a solid fuel in bio-briquettes. This study transformed fluff tea into bio-briquettes utilizing biochar produced through slow pyrolysis. The study aimed to optimize bio-briquettes production from fluff tea using the Response Surface Methodology (RSM) approach through proximate analysis. The cylindrical bio-briquettes were produced using biochar particle sizes of 850, 500, and 150 μm, resin gum adhesive concentrations of 10%, 15%, and 20%, and immersion times in cooking oil of 0, 3, and 6 minutes. The results showed that the overall response by the p-value was <0.05, and the lack of fit was insignificant (p-value >0.05). The findings indicated that the calorific value of tea fluff rose from 4,482.56 cal/g to 6,374.98 cal/g after conversion to biochar. The optimum conditions for producing tea fluff bio-briquettes were a particle size of 850 μm, adhesive concentration of 11%, and immersion time of 5 minutes. The bio-briquettes exhibited a moisture content of 3.53%, ash content of 5.65%, volatile matter of 14.75%, fixed carbon of 76.14%, calorific value of 7,796.37 cal/g, combustion rate of 0.11 g/min, density of 1.22 g/cm3, and compressive strength of 35.57 N/cm2. Most tea fluff briquettes' properties had met Indonesia's briquettes standard. The production of bio-briquettes from tea fluff waste is a viable alternative fuel for both industrial and domestic applications.

Fulltext View|Download
Keywords: Biobriquettes; Tea Fluff; Resin Gum Adhesive; Used Cooking Oil Dipping; Response Surface Methodology (RSM); Box-Behnken Design (BBD)
Funding: Nanotechnology and Materials Research Organization--National Research and Innovation Agency

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Akolgo, G. A., Awafo, E. A., Essandoh, E. O., Owusu, P. A., Uba, F., & Adu-Poku, K. A. (2021). Assessment of the potential of charred briquettes of sawdust, rice and coconut husks: Using water boiling and user acceptability tests. Scientific African, 12, e00789. https://doi.org/10.1016/j.sciaf.2021.e00789
  2. Alfajriandi, Hamzah, F., & Hamzah, F. H. (2017). Perbedaan Ukuran Partikel Terhadap Kualitas Briket Arang Daun Pisang Kering. JOP Faperta UR, 4(1), 1–15
  3. Allo, J. S. T., Setiawan, A., & Sanjaya, A. S. (2018). Utilization of Rice Husk for Making Biobriquette Using Pyrolysis Method. Jurnal Chemurgy, 02(01), 1–7
  4. Araújo, S., Boas, M. A. V., Neiva, D. M., de Cassia Carneiro, A., Vital, B., Breguez, M., & Pereira, H. (2016). Effect of a mild torrefaction for production of eucalypt wood briquettes under different compression pressures. Biomass and Bioenergy, 90, 181–186. https://doi.org/10.1016/j.biombioe.2016.04.007
  5. Ariyanti, N., & Mirwan, M. (2022). Studi Peningkatan Mutu Biobriket dengan Penambahan Paper Waste dan Minyak Jelantah. ESEC PROCEEDING: Environmental Science and Engineering Conference, 3(1), 20–28. https://doi.org/10.1139/l91-019
  6. Bazenet. (n.d.). Pengaruh Kadar Perekat Terhadap Karakteristik Briket Arang Limbah Kayu Karet (Hevea brasiliensis Muell. Arg)
  7. Bazenet, R. A., Hidayat, W., Ridjayanti, S. M., Riniarti, M., Banuwa, S., Haryanto, A., & Hasanudin, U. (2021). Pengaruh Kadar Perekat Terhadap Karakteristik Briket Arang Limbah Kayu Karet (Hevea brasiliensis Muell. Arg). Jurnal Teknik Pertanian Lampung , 10(3), 283–295
  8. de Almeida, S. G. C., Tarelho, L. A. C., Hauschild, T., Costa, M. A. M., & Dussán, K. J. (2022). Biochar production from Sugarcane Biomass Using Slow Pyrolysis: Characterization of the Solid Fraction. Chemical Engineering and Processing - Process Intensification, 179(July). https://doi.org/10.1016/j.cep.2022.109054
  9. Dewi, C., & Wulansari, R. (2023). Pengaruh Aplikasi Kompos Tea Fluff dan Azotobacter Sp. terhadap Sifat Fisik Tanah dan Pertumbuhan Bibit Pada Persemaian Teh. Jurnal Tanah Dan Sumberdaya Lahan, 10(1), 135–142. https://doi.org/10.21776/ub.jtsl.2023.010.1.15
  10. Efelina, V., Naubnome, V., & Sari, D. A. (2018). Biobriket Limbah Kulit Durian dengan Pencelupan pada Minyak Jelantah. CHEESA: Chemical Engineering Research Articles , 1(2), 37–42
  11. Espuelas, S., Marcelino, S., Echeverría, A. M., del Castillo, J. M., & Seco, A. (2020). Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel, 278(June), 118310. https://doi.org/10.1016/j.fuel.2020.118310
  12. Hadey, C., Allouch, M., Alami, M., Boukhlifi, F., & Loulidi, I. (2022). Preparation and Characterization of Biochars Obtained from Biomasses for Combustible Briquette Applications. Scientific World Journal, 1–13. https://doi.org/10.1155/2022/2554475
  13. Hainur Aini, Puspita Rahayu, Alizar Ulianas, Egi Agustian, & Anny Sulaswatty. (2023). Pengaruh Temperatur Pirolisis Terhadap Karakteristik Biochar dari Limbah Padat Agroindustri Teh. INSOLOGI: Jurnal Sains Dan Teknologi, 2(6), 1173–1183. https://doi.org/10.55123/insologi.v2i6.3059
  14. Haryanti, N. H., Annisa, N., Prasetia, H., Suryajaya, Humaida, N., Nurhalimah, & Sulaswatty, A. (2023). Manufacture of Biobriquettes from Alaban (Vitex pubescens) Biomass Waste and Rubber Seed Shells using Damar Resin Adhesive. Pakistan Journal of Life and Social Sciences, 21(1), 194–204. https://doi.org/10.57239/PJLSS-2023-21.1.0016
  15. Haryanti, N. H., Annisa, N., Suryajaya, & Surini. (2023). Energi Alternatif: Briket Berbahan Biomassa Kayu Alaban & Cangkang Biji Karet Berperakat Getah Karet Pada Pencelupan Minyak Jelantah. Jurnal Fisika Flux: Jurnal Ilmiah Fisika FMIPA Universitas Lambung Mangkurat, 20(1), 12–22
  16. Hidayat, I. R., Zuhrotun, A., & Sopyan, I. (2020). Design-Expert Software sebagai Alat Optimasi Formulasi Sediaan Farmasi. Majalah Farmasetika, 6(1), 99–120. https://doi.org/10.24198/mfarmasetika.v6i1.27842
  17. Hidayat, W., Rani, I. T., Yulianto, T., Febryano, I. G., Iryani, D. A., Hasanudin, U., Lee, S., Sangdo, K., Yoo, J., & Agus, H. (2020). Peningkatan Kualitas Pelet Tandan Kosong Kelapa Sawit Melalui Torefaksi Menggunakan Reaktor Counter-Flow Multi Baffle (COMB). Jurnal Rekayasa Proses, 14(2), 169–181. https://doi.org/10.22146/jrekpros.59172
  18. Hu, W., Zhang, Y., Rong, X., Zhou, X., Fei, J., Peng, J., & Luo, G. (2024). Biochar and organic fertilizer applications enhance soil functional microbial abundance and agroecosystem multifunctionality. Biochar, 6(1). https://doi.org/10.1007/s42773-023-00296-w
  19. Irmawati, A., Sar, K., Prodi, M., Pangan, T., Sains, F., & Mataram, U. W. (2023). Optimasi Formulasi Virgin Coconut Oil ( VCO ), Susu Full Cream , dan Maltodekstrin Terhadap Karakteristik Fisikokimia Mayonnaise Rendah Lemak Menggunakan Response Surface Methodology ( RSM ). Agrotech : Jurnal Ilmiah Teknologi, 5(1), 1–12
  20. Iskandar, T., & Rofiatin, U. (2017a). Biochar Characteristics Based on Biomass Type and Pyrolysis Process Parameters Biochar Characteristics Based on Biomass Type and Pyrolysis Process Parameters. Jurnal Teknik Kimia, 12(1), 28–34
  21. Iskandar, T., & Rofiatin, U. (2017b). Karakteristik Biochar Berdasarkan Jenis Biomassa dan Parameter Proses Pyrolisis. Jurnal Teknik Kimia, 12(1), 28–34. https://doi.org/10.33005/tekkim.v12i1.843
  22. Jegan, J., Praveen, S., Muthu, B., Pushpa, T. B., & Gokulan, R. (2021). Box-Behnken Experimental Design for the Optimization of Basic Violet 03 dye Removal by Groundnut Shell Derived Biochar. Desalination and Water Treatment, 209, 379–391. https://doi.org/10.5004/dwt.2021.26495
  23. Kozlov, A., Svishchev, D., Donskoy, I., Shamansky, V., & Ryzhkov, A. (2015). A technique proximate and ultimate analysis of solid fuels and coal tar. Journal of Thermal Analysis and Calorimetry, 122(3), 1213–1220. https://doi.org/10.1007/s10973-015-5134-7
  24. Limahelu, F. A., Jasman, & Sarifudin, K. (2021). Optimasi Suhu , pH , dan Konsentrasi Inokolum pada Proses Ko- Fermentasi Batang Sorgum Manis (Sorghum bicolor (L.) Moench) dengan Biakan Saccharomyces Cerevisiae-Trichoderma Reesei. Jurnal Beta Kimia, 1(X), 54–63
  25. Lubwama, M., Yiga, V. A., Muhairwe, F., & Kihedu, J. (2020). Physical and combustion properties of agricultural residue bio-char bio-composite briquettes as sustainable domestic energy sources. Renewable Energy, 148, 1002–1016. https://doi.org/10.1016/j.renene.2019.10.085
  26. Magnago, R. F., Costa, S. C., Assunção Ezirio, M. J. de, Godoy Saciloto, V. de, Cremona Parma, G. O., Gasparotto, E. S., Gonçalves, A. C., Tutida, A. Y., & Barcelos, R. L. (2020). Briquettes of citrus peel and rice husk. Journal of Cleaner Production, 276. https://doi.org/10.1016/j.jclepro.2020.123820
  27. Mangmang, G., Zhongyi, Q., Fan, W., Xiaoyu, G., & Min, H. (2018). Progress in Research on Biochar Affecting Soil-water Environment and Carbon Sequestration-mitigating Emissions in Agricultural Fields. Transactions of the Chinese Society of Agricultural Machinery, 49(7), 1–12. https://doi.org/1000-1298(2018)07-0001-12
  28. Martin, L., Ciptadi, G., Putra, F., & * K. (2024). Collaborative Innovation in Pyrolysis and Biomass Stoves (Biopyro) as an Improvement in Household Waste Management. Transactions of the Chinese Society of Agricultural Machinery, 55(1), 55–67. https://doi.org/10.62321/issn.1000-1298.2024.01.05
  29. Masthura, Daulay, A. H., & Desgira, H. W. (2022). Pengaruh Variasi Perekat Terhadap Nilai Kalor Briket Dari Serbuk Daun Teh. JISTech (Journal of Islamic Science and Technology) JISTech, 7(1), 15–23
  30. Mukherjee, A., & Lal, R. (2014). The biochar dilemma. Soil Research, 52(3), 217–230. https://doi.org/10.1071/SR13359
  31. Nisavira, P., Agustian, E., Muttaqi, M. Al, Sudayani, Y., Yustinah, Y., Nugrahani, R. A., Kurniasari, I., Sari, D. D. P., & Sulaswatty, A. (2023). Characteristics of Biochar from Pyrolysis of Solid Waste Hydrodistillation of Cardamom Seed Oil (Amomum cardamomum). AIP Conference Proceedings, 2902(1)
  32. Nursal, F. K., Sumirtapura, Y. C., Suciati, T., & Kartasasmita, R. E. (2019). Optimasi Nanoemulsi Natrium Askorbil Fosfat melalui Pendekatan Design of Experiment (Metode Box Behnken). Jurnal Sains Farmasi & Klinis, 6(3), 228. https://doi.org/10.25077/jsfk.6.3.228-236.2019
  33. Putri, R. E., & Andasuryani. (2017). Studi Mutu Briket Arang Dengan Bahan Baku Limbah Biomassa. Jurnal Teknologi Pertanian Andalas, 21(2), 143–152
  34. Qanitah, Q., Akbar, Y. D. F., Ulma, Z., & Hananto, Y. (2023). Peningkatan Kualitas Briket Ampas Kopi Menggunakan Perekat Kulit Jeruk Melalui Metode Torefaksi Terbaik. Journal of Engineering Science and Technology, 1(1), 32–43. https://doi.org/10.47134/jesty.v1i1.3
  35. Rahmi, Lubis, S., Adlim, M., Lelifajri, Az Zahra, N., & Fathana, H. (2023). Pemanfaatan Selulosa dari Bahan Alam pada Pembuatan Komposit. Syiah Kuala University Press
  36. Redjeki, S., Abdullah, A., & Dwitama, S. K. (2023). Karakteristik Kualitas Biochar dari Limbah Batang Ubi Kayu dengan Proses Pirolisis. Jurnal Teknik Kimia, 18(1), 28–32
  37. Ridhuan, K., Irawan, D., Zanaria, Y., & Adi, N. (2018). Pengaruh Cara Pembakaran Pirolisis Terhadap Karakteristik dan Efisiensi Arang dan Asap Cair Yang Dihasilkan. Seminar Nasional Teknologi Terapan, 6, 141–150
  38. Ristianingsih, Y., Mardina, P., Poetra, A., & Febrida, M. Y. (2013). Pembuatan Briket Bioarang Berbahan Baku Sampah Organik Daun Ketapang Sebagai Energi Alternatif. Jurnal Info Teknik, 14(1), 74–80
  39. Sahdiah, H., & Kurniawan, R. (2023). Optimasi Tegangan Akselerasi pada Scanning Electron Microscope-Energy Dispersive X-Ray Spectroscopy (SEM-EDX) untuk Pengamatan Morfologi Sampel Biologi. Jurnal Sains Dan Edukasi Sains, 6(2), 117–123. https://doi.org/10.24246/juses.v6i2p117-123
  40. Sarante, J. (2024). Energi Baru dan Terbarukan (EBT) sebagai Teknologi Alternatif Dimasa Depan dalam Mendukung Pertahanan Negara (Juni (ed.)). Ditekindhan Ditjen Pothan Kemhan. https://www.kalderanews.com/2020/05/apa-sih-bedanya-energi-baru-dan-terbarukan/
  41. Setyopambudi, M. D. (2015). Analisis Karakteristik Mekanik Briket Dengan Variasi Ukuran Partikel Briket Arang Limbah Serbuk Gergaji Kayu Sengon. Universitas Jember
  42. Situmorang, A. R., & Kusmartono, B. (2022). Pembuatan Briket Tempurung Kelapa Dengan Menggunakan Perekat Tepung Terigu. Jurnal Inovasi Proses, 7(1), 33–40
  43. Sulaswatty, A. (2023). Pengembangan Biobriket dari Limbah Padat Biomassa Agroindustri Teh Sebagai Alternatif Material Konversi dan Penyimpan Energi Untuk Menggerakkan Kegiatan Ekonomi Sirkular
  44. Susanti, N. L., & Dewi, K. (2023). The Effect of Rice Husk Biochar on the Growth and Phytohormone Profile of Chinese Cabbage under Drought Conditions. Transactions of the Chinese Society of Agricultural Machinery, 54(7), 15–29. http://creativecommons.org/licenses/by/4.0
  45. Tasfiyati, A. N., Prasetia, H., Muzdalifah, D., Ramadhaningtyas, D. P., Andreas, A., Yuliani, F., Majalis, A. N., & Ernawati, T. (2022). Optimization of Evaporative Light Scattering Detector using Response Surface Methodology for Liquid Chromatography Analysis of Frondoside A. ChemistrySelect, 7(36), 1–10. https://doi.org/10.1002/slct.202202021
  46. Tiwow, V. A., Rampe, M. J., Rampe, H. L., & Apita, A. (2021). Pola Inframerah Arang Tempurung Kelapa Hasil Pemurnian Menggunakan Asam. Chemistry Progress, 14(2), 116–123. https://doi.org/10.35799/cp.14.2.2021.37191
  47. Trubetskaya, A., Leahy, J. J., Yazhenskikh, E., Müller, M., Layden, P., Johnson, R., Ståhl, K., & Monaghan, R. F. D. (2019). Characterization of woodstove briquettes from torrefied biomass and coal. Energy, 171, 853–865. https://doi.org/10.1016/j.energy.2019.01.064
  48. Wahyudi, M. I., & Gani, A. (2022). Pemanfaatan Maltodextrin sebagai Perekat untuk Meningkatkan Kualitas Briket dari Sampah Daun Kering. Jurnal Inovasi Ramah Lingkungan, 1(2), 5–10
  49. Wulansari, R., & Rezamela, E. (2020). Pengaruh Kompos Limbah Teh Hitam (Tea fluff) Terhadap Pertumbuhan Benih Teh (Camellia Sinensis (L.) Kuntze). Jurnal Tanah Dan Sumberdaya Lahan, 7(2), 341–350. https://doi.org/10.21776/ub.jtsl.2020.007.2.19
  50. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
  51. Yang, C., Liu, J., & Lu, S. (2021). Pyrolysis Temperature Affects Pore Characteristics of Rice Straw and Canola Stalk Biochars and Biochar-amended Soils. Geoderma, 397(October 2020), 115097. https://doi.org/10.1016/j.geoderma.2021.115097
  52. Yanmei, L., Xingchang, Z., Shangqiang, L., Jungang, Y., Lin, Z., & Yanxin, S. (2017). Research Progress on Synergy Technologies of Carbon-based Fertilizer and Its Application. Transactions of the Chinese Society of Agricultural Machinery, 48(10), 1–14. https://doi.org/1000-1298(2017)10-0001-14
  53. Yudo, E., & Husman, H. (2019). Analisa Keausan Elektroda Electrical Discharge Machining Menggunakan Metoda Response Surface Methodology. Manutech : Jurnal Teknologi Manufaktur, 10(02), 15–22. https://doi.org/10.33504/manutech.v10i02.63
  54. Yuliah, Y., Suryaningsih, S., & Ulfi, K. (2017). Penentuan Kadar Air Hilang dan Volatile Matter pada Bio-briket dari Campuran Arang Sekam Padi dan Batok Kelapa. Jurnal Ilmu Dan Inovasi Fisika, 1(1), 51–57. https://doi.org/10.24198/jiif.v1n1.7
  55. Yuliza, N., Nazir, N., & Djalal, M. (2013). Pengaruh Komposisi Arang Sekam Padi dan Arang Kulit Biji Jarak Pagar Terhadap Mutu Briket Arang. Jurnal Litbang Industri, 3(1), 21–30. https://doi.org/10.24960/jli.v3i1.617.21-30
  56. Zhongyi, Q., Lihua, G., Changjian, L., & Na, Z. (2016). Impacts of Straw Biochar on Emission of Greenhouse Gas in Maize Field. Transactions of the Chinese Society of Agricultural Machinery, 47(12), 111–118. https://doi.org/1000-1298(2016)-12-0111-08

Last update:

No citation recorded.

Last update: 2025-09-11 06:00:35

No citation recorded.