skip to main content

From waste to energy: A systematic review of sewage sludge conversion to solid fuels via thermochemical methods

1Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Faculty of Chemical Engineering, , Universiti Teknologi MARA Sarawak Branch, 94300 Kota Samarahan, Sarawak, Malaysia

3Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

4 Faculty of Chemical Engineering, , Universiti Teknologi MARA Terengganu Branch, Bukit Besi Campus, 23200 Dungun, Terengganu, Malaysia

5 Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

6 High Temperature Processing Lab, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia

View all affiliations
Received: 7 Mar 2025; Revised: 30 Jun 2025; Accepted: 11 Jul 2025; Available online: 16 Jul 2025; Published: 1 Sep 2025.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Sewage sludge, a byproduct of wastewater treatment, poses significant risks to human health and ecosystems due to its high levels of harmful pollutants, including heavy metals, viruses, and non-biodegradable materials. To mitigate these hazards, thermochemical conversion has emerged as a sustainable strategy for recovering energy and nutrients while reducing the toxicity of sewage sludge. A comprehensive literature search across Science Direct, Scopus, and Web of Science yielded 46 peer-reviewed papers from an initial 2,715 publications. This paper presents a systematic review of the thermochemical conversion processes used to transform sewage sludge into solid fuels, focusing on pyrolysis, torrefaction, and hydrothermal carbonization. The study highlights the significance of optimizing operational parameters and investigates the physicochemical properties of the biochar produced. The results indicate that reaction temperature, time, and heating rate significantly influence the quality and yield of the resulting biochar. Higher temperatures (300–1000°C) enhance the energy content while reducing solid yield. The environmental impacts associated with thermochemical methods, including emissions and potential pollutants, are discussed along with the challenges in treating and transforming sewage sludge into solid fuels. These findings indicate that hydrothermal carbonization is a promising method for waste management and energy production, supporting global efforts to reduce greenhouse gas emissions and dependence on fossil fuels. However, challenges remain in scaling up these technologies for commercial implementation due to high capital and operational costs This review contributes to the understanding of thermochemical processes and their potential applications in sustainable waste-management practices. Future research should focus on pilot and industrial-scale validation, cost-effective pretreatment strategies, and standardized analytical methods. Supportive policy frameworks and investment in demonstration projects are crucial for promoting thermochemical conversion as a viable waste-to-energy solution, contributing to sustainable development and climate change mitigation.
Fulltext View|Download
Keywords: Sewage sludge; Thermochemical; Solid fuels; Biochar; Waste management

Article Metrics:

Article Info
Section: Review Article
Language : EN
  1. Abdoli, M. A., & Ghasemzadeh, R. (2024). Evaluation and optimization of hydrothermal carbonization condition for hydrochar and methane yield from anaerobic digestion of organic fraction of municipal solid waste ( OFMSW ). Fuel, 355, 129531. https://doi.org/10.1016/j.fuel.2023.129531
  2. Afolabi, O. O. D., Sohail, M., & Thomas, C. L. P. (2017). Characterization of solid fuel chars recovered from microwave hydrothermal carbonization of human biowaste. Energy, 134, 74–89. https://doi.org/10.1016/j.energy.2017.06.010
  3. Ahn, H., Kim, D., & Lee, Y. (2020). Combustion characteristics of sewage sludge solid fuels produced by drying and hydrothermal carbonization in a fluidized bed. Renewable Energy, 147, 957–968. https://doi.org/10.1016/j.renene.2019.09.057
  4. An, J., Lee, B. K., Jeon, B., & Ji, M. (2021). A Management Plan of Wastewater Sludge to Reduce the Exposure of Microplastics to the Ecosystem. Clean Technology, 27 (1), 1–8. https://doi.org/10.7464/ksct.2021.27.1.1
  5. Aparna, R. P. (2022). Sewage sludge ash for soil stabilization : A review. Materials Today: Proceedings, 61, 392–399. https://doi.org/10.1016/j.matpr.2021.10.349
  6. Atienza-Martínez, M., Mastral, J. F., Ábrego, J., Ceamanos, J., & Gea, G. (2015). Sewage sludge torrefaction in a fluidized bed reactor. Energy and Fuels, 29 (1), 160–170. https://doi.org/10.1021/ef501425h
  7. Babatabar, M. A., & Tavasoli, A. (2024). Application of used engine oil as a hydrogen-rich substance in co-pyrolysis with pine wood for reduction its environmental hazards and produced diesel-like fuel : Thermal behavior , kinetic and thermodynamic analysis. Process Safety and Environmental Protection, 182, 789–807. https://doi.org/10.1016/j.psep.2023.12.027
  8. Cebi, D., Çeliktaş, M. S., & Sarptaş, H. (2022). A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy. Circular Economy and Sustainability, 2(4), 1345–1367. https://doi.org/10.1007/s43615-022-00148-y
  9. Chan, W. P., & Wang, J.-Y. (2016). Comprehensive characterisation of sewage sludge for thermochemical conversion processes-Based on Singapore survey. Waste Management, 54, 131–142. https://doi.org/10.1016/j.wasman.2016.04.038
  10. Chen, R., Sheng, Q., Dai, X., & Dong, B. (2021). Upgrading of sewage sludge by low temperature pyrolysis: Biochar fuel properties and combustion behavior. Fuel, 300, 121007. https://doi.org/10.1016/j.fuel.2021.121007
  11. Djandja, O. S., Yin, L.-X., Wang, Z.-C., & Duan, P.-G. (2021). From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review. Process Safety and Environmental Protection, 151, 101–127. https://doi.org/10.1016/j.psep.2021.05.006
  12. Domini, M., Abbà, A., & Bertanza, G. (2022). Analysis of the Variation of Costs for Sewage Sludge Transport, Recovery and Disposal in Northern Italy: A Recent Survey (2015–2021). Water Science & Technology, 85(4), 1167–1175. https://doi.org/10.2166/wst.2022.040
  13. Duan, B., & Feng, Q. (2022). Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province. International Journal of Environmental Research and Public Health, 19(7), 4236. https://doi.org/10.3390/ijerph19074236
  14. Ebrahimi, M., Ramirez, J. A., Outram, J. G., Dunn, K., Jensen, P. D., O’Hara, I. M., & Zhang, Z. (2023). Effects of lignocellulosic biomass type on the economics of hydrothermal treatment of digested sludge for solid fuel and soil amendment applications. Waste Management, 156, 55–65. https://doi.org/10.1016/j.wasman.2022.11.020
  15. Gai, C., Chen, M., Liu, T., Peng, N., & Liu, Z. (2016). Gasification characteristics of hydrochar and pyrochar derived from sewage sludge. Energy, 113, 957–965. https://doi.org/10.1016/j.energy.2016.07.129
  16. Gao, N., Kamran, K., & Quan, C. (2020). Thermochemical conversion of sewage sludge: A critical review. Progress in Energy and Combustion Science, 79, 100843. https://doi.org/10.1016/j.pecs.2020.100843
  17. Gao, N., Li, Z., Quan, C., Miskolczi, N., & Egedy, A. (2019). A new method combining hydrothermal carbonization and mechanical compression in-situ for sewage sludge dewatering: Bench-scale verification. Journal of Analytical and Applied Pyrolysis, 139, 187–195. https://doi.org/10.1016/j.jaap.2019.02.003
  18. Garc, C., Maldonado-villalpando, E., & Segu, L. (2024). Circular Economy , Eco-Innovation and a Business Model for the Operation of Wastewater Treatment Plants in Mexico. 13, 1–15. https://doi.org/10.3390/ resources13070087
  19. Ghodke, P. K., Sharma, A. K., Pandey, J. K., Chen, W. H., Patel, A., & Ashokkumar, V. (2021). Pyrolysis of sewage sludge for sustainable biofuels and value-added biochar production. Journal of Environmental Management, 298, 113450. https://doi.org/10.1016/j.jenvman.2021.113450
  20. Guo, S., Xu, D. D., Guo, X., Li, X., & Zhao, C. (2022). Multi-response optimization of sewage sludge-derived hydrochar production and its CO2-assisted gasification performance. Journal of Environmental Chemical Engineering, 10 (1), 107036. https://doi.org/10.1016/j.jece.2021.107036
  21. Gururani, P., Bhatnagar, P., Bisht, B., Jaiswal, K. K., Kumar, V., Kumar, S., Vlaskin, M. S., Grigorenko, A. V., & Rindin, K. G. (2022). Recent advances and viability in sustainable thermochemical conversion of sludge to bio-fuel production. Fuel, 316, 123351. https://doi.org/10.1016/j.fuel.2022.123351
  22. Han, W., Jin, P., Chen, D., Liu, X., Jin, H., Wang, R., & Liu, Y. (2021). Resource reclamation of municipal sewage sludge based on local conditions : A case study in Xi ’ an , China. Journal of Cleaner Production, 316, 128189. https://doi.org/10.1016/j.jclepro.2021.128189
  23. Hanum, F., Yuan, L. C., Kamahara, H., Aziz, H. A., Atsuta, Y., Yamada, T., & Daimon, H. (2019). Treatment of Sewage Sludge Using Anaerobic Digestion in Malaysia: Current State and Challenges. Frontiers in Energy Research, 7, 19. https://doi.org/10.3389/fenrg.2019.00019
  24. He, C., Giannis, A., & Wang, J. Y. (2013). Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior. Applied Energy, 111, 257–266. https://doi.org/10.1016/j.apenergy.2013.04.084
  25. He, C., Wang, K., Giannis, A., Yang, Y., & Wang, J. Y. (2015). Products evolution during hydrothermal conversion of dewatered sewage sludge in sub- and near-critical water: Effects of reaction conditions and calcium oxide additive. International Journal of Hydrogen Energy, 40 (17), 5776–5787. https://doi.org/10.1016/j.ijhydene.2015.03.006
  26. He, C., Wang, K., Yang, Y., & Wang, J. Y. (2014). Utilization of sewage-sludge-derived hydrochars toward efficient co-combustion with different rank coals: Effects of subcritical water conversion and blending scenarios. Energy and Fuels, 28 (9), 6140–6150. https://doi.org/10.1021/ef501386g
  27. Hejna, Małgorzata, Świechowski, K., & Białowiec, A. (2023). Study on the Effect of Hydrothermal Carbonization Parameters on Fuel Properties of Sewage Sludge Hydrochar. Materials, 16 (21), 6903. https://doi.org/10.3390/ma16216903
  28. Horikoshi, S., Hidaka, T., Nishimura, F., & Kishimoto, N. (2024). Development of separation and recovery technology of cultured Euglena gracilis using activated sludge for anaerobic digestion. Bioresource Technology Reports, 25, 101790. https://doi.org/10.1016/j.biteb.2024.101790
  29. Hu, M., Hu, H., Ye, Z., Tan, S., Yin, K., Chen, Z., Guo, D., Rong, H., Wang, J., Pan, Z., & Hu, Z. (2022). A review on turning sewage sludge to value-added energy and materials via thermochemical conversion towards carbon neutrality. Journal of Cleaner Production, 379, 134657. https://doi.org/10.1016/j.jclepro.2022.134657
  30. Hu, M., Ye, Z., Zhang, H., Chen, B., Pan, Z., & Wang, J. (2021). Thermochemical Conversion of Sewage Sludge for Energy and Resource Recovery: Technical Challenges and Prospects. Environmental Pollutants and Bioavailability, 33(1), 145–163. https://doi.org/10.1080/26395940.2021.1947159
  31. Huang, H. J., Yuan, X. Z., Li, B. T., Xiao, Y. D., & Zeng, G. M. (2014). Thermochemical liquefaction characteristics of sewage sludge in different organic solvents. Journal of Analytical and Applied Pyrolysis, 109, 176–184. https://doi.org/10.1016/j.jaap.2014.06.015
  32. Huang, Y. F., Shih, C. H., Chiueh, P. Te, & Lo, S. L. (2015). Microwave co-pyrolysis of sewage sludge and rice straw. Energy, 87, 638–644. https://doi.org/10.1016/j.energy.2015.05.039
  33. Huezo, L., Vasco-Correa, J., & Shah, A. (2021). Hydrothermal carbonization of anaerobically digested sewage sludge for hydrochar production. Bioresource Technology Reports, 15, 100795. https://doi.org/10.1016/j.biteb.2021.100795
  34. Ibitoye, S. E., Mahamood, R. M., Jen, T. C., Loha, C., & Akinlabi, E. T. (2023). An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties. Journal of Bioresources and Bioproducts, 8(4), 333–360. https://doi.org/10.1016/j.jobab.2023.09.005
  35. Jjagwe, J., Olupot, P. W., Menya, E., & Kalibbala, H. M. (2021). Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. Journal of Bioresources and Bioproducts, 6(4), 292–322. https://doi.org/10.1016/j.jobab.2021.03.003
  36. Jumasheva, K. (2023). Overview of Modern Methods of Treatment and Disposal of Sewage Sludge. E3s Web of Conferences, 420, 7008. https://doi.org/10.1051/e3sconf/202342007008
  37. Karki, S., Poudel, J., & Oh, S. C. (2018). Thermal Pre-Treatment of Sewage Sludge in a Lab-Scale Fluidized Bed for Enhancing Its Solid Fuel Properties. Applied Sciences, 8 (2), 183. https://doi.org/10.3390/app8020183
  38. Khalid, U., Khan, S., Ghulam, S., Khan, M. U., Khan, N., Khan, M. A., & Khalil, S. K. (2012). Sewage Sludge: An Important Biological Resource for Sustainable Agriculture and Its Environmental Implications. American Journal of Plant Sciences, 03(12), 1708–1721. https://doi.org/10.4236/ajps.2012.312209
  39. Kim, D., Lee, K., & Park, K. Y. (2014). Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel, 130, 120–125. https://doi.org/10.1016/j.fuel.2014.04.030 0016-2361/Ó
  40. Kim, D., Park, D., Lim, Y.-T., Park, S., Park, Y.-S., & Kim, K.-H. (2021). Combustion Melting Characterisation of Solid Fuel Obtained From Sewage Sludge. Energies, 14(4), 805. https://doi.org/10.3390/en14040805
  41. Koko, I. W., Lim, J., Surya, B., & Yenis, I. (2022). Effect of sludge sewage quality on heating value : case study in Jakarta , Indonesia. Desalination and Water Treatment, 249, 183–190. https://doi.org/10.5004/dwt.2022.28071
  42. Kolosionis, A., Kastanaki, E., Veksha, A., Wang, H., He, C., Lisak, G., & Giannis, A. (2021). The Effects of Washing Techniques on Thermal Combustion Properties of Sewage Sludge Chars. International Journal of Environmental Research, 15 (2), 285–297. https://doi.org/10.1007/s41742-021-00312-6
  43. Kosiński, P., Kask, B., Franus, M., Piłat-Rożek, M., Szulżyk-Cieplak, J., & Łagód, G. (2023). The Possibility of Using Sewage Sludge Pellets as Thermal Insulation. Advances in Science and Technology – Research Journal, 17(2), 161–172. https://doi.org/10.12913/22998624/159724
  44. Lamastra, L., Suciu, N., & Trevisan, M. (2018). Sewage Sludge for Sustainable Agriculture: Contaminants’ Contents and Potential Use as Fertilizer. Chemical and Biological Technologies in Agriculture, 5(1). https://doi.org/10.1186/s40538-018-0122-3
  45. Languer, M. P., Batistella, L., Alves, J. L. F., Da Silva, J. C. G., da Silva Filho, V. F., Di Domenico, M., Moreira, R. de F. P. M., & José, H. J. (2020). Insights into pyrolysis characteristics of Brazilian high-ash sewage sludges using thermogravimetric analysis and bench-scale experiments with GC-MS to evaluate their bioenergy potential. Biomass and Bioenergy, 138, 1–10. https://doi.org/10.1016/j.biombioe.2020.105614
  46. Lee, J. Y., Karki, S., Poudel, J., Lee, K. W., & Oh, S. C. (2019). Fuel characteristics of sewage sludge using thermal treatment. Journal of Material Cycles and Waste Management, 21 (4), 766–773. https://doi.org/10.1007/s10163-019-00830-8
  47. Li, X., Yuan, S., Cai, C., Li, X., Wu, H., Shen, D., & Dong, B. (2024). A 20-year shift in China ’ s sewage sludge heavy metals and its feasibility of nutrient recovery in land use ☆. Environmental Pollution, 341, 122907. https://doi.org/10.1016/j.envpol.2023.122907
  48. Lin, Y. L., Zheng, N. Y., & Wang, H. C. (2022). Sludge dewatering through H2O2 lysis and ultrasonication and recycle for energy by torrefaction to achieve zero waste: An environmental and economical friendly technology. Renewable and Sustainable Energy Reviews, 155 (1), 1–12. https://doi.org/10.1016/j.rser.2021.111857
  49. Lu, X., Ma, X., Qin, Z., Chen, X., & Qi, X. (2022). Investigation of aqueous phase recirculation on co-hydrothermal carbonization of sewage sludge and lignite : Hydrochar properties and heavy metal chemical speciation. Journal of Environmental Chemical Engineering, 10(1), 107111. https://doi.org/10.1016/j.jece.2021.107111
  50. Luis, C., Silva-leal, J. A., & Andrea, P. (2022). The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge : A Systematic Review. Sustainability, 14, 5910. https://doi.org/10.3390/su14105910
  51. Malhotra, M., & Garg, A. (2023). Hydrothermal carbonization of sewage sludge: Optimization of operating conditions using design of experiment approach and evaluation of resource recovery potential. Journal of Environmental Chemical Engineering, 11 (2), 109507. https://doi.org/10.1016/j.jece.2023.109507
  52. Mancuso, G., Langone, M., Maggio, R. D., Toscano, A., & Andreottola, G. (2021). Effect of Hydrodynamic Cavitation on Flocs Structure in Sewage Sludge to Increase Stabilization for Efficient and Safe Reuse in Agriculture. Bioremediation Journal, 26(1), 41–52. https://doi.org/10.1080/10889868.2021.1900055
  53. Marin-Batista, J. D., Mohedano, A. F., Rodríguez, J. J., & de la Rubia, M. A. (2020). Energy and phosphorous recovery through hydrothermal carbonization of digested sewage sludge. Waste Management, 105, 566–574. https://doi.org/10.1016/j.wasman.2020.03.004
  54. Martín-ortega, J. L., Chornet, J., Sebos, I., Akkermans, S., José, M., & Blanco, L. (2024). Enhancing Transparency of Climate Efforts : MITICA ’ s Integrated Approach to Greenhouse Gas Mitigation. Sustainability, 16, 4219. https://doi.org/10.3390/su16104219
  55. Merzari, F., Goldfarb, J., Andreottola, G., Mimmo, T., Volpe, M., & Fiori, L. (2020). Hydrothermal Carbonization as a Strategy for Sewage Sludge Management : Influence of Process Withdrawal Point on Hydrochar Properties. Energies, 13 (11), 2890. https://doi.org/10.3390/en13112890
  56. Minh, L., Kamyab, H., Yuzir, A., Ashokkumar, V., Ehsan, S., Balasubramanian, B., & Kirpichnikova, I. (2022). Review of the application of gasification and combustion technology and waste-to-energy technologies in sewage sludge treatment. Fuel, 316(October 2021), 123199. https://doi.org/10.1016/j.fuel.2022.123199
  57. Ministry of Energy, G. T. and W. (KeTTHA). (2017). Green Technology Master Plan Malaysia 2017-2030
  58. Naqvi, S. R., Tariq, R., Shahbaz, M., Naqvi, M., Aslam, M., Khan, Z., Mackey, H., Mckay, G., & Al-Ansari, T. (2021). Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Computers and Chemical Engineering, 150, 107325. https://doi.org/10.1016/j.compchemeng.2021.107325
  59. Nydrioti, I., Sebos, I., Kitsara, G., & Assimacopoulos, D. (2024). Effective management of urban water resources under various climate scenarios in semiarid mediterranean areas. Scientific Reports, 14, 28666. https://doi.org/10.1038/s41598-024-79938-3 1
  60. Paiboonudomkarn, S., Wantala, K., Lubphoo, Y., & Khunphonoi, R. (2023). Conversion of sewage sludge from industrial wastewater treatment to solid fuel through hydrothermal carbonization process. Materials Today: Proceedings, 75, 85–90. https://doi.org/10.1016/j.matpr.2022.11.107
  61. Pang, D., Mao, Y., Jin, Y., Song, Z., Wang, X., Li, J., & Wang, W. (2023). Review on the use of sludge in cement kilns : Mechanism , technical , and environmental evaluation. Process Safety and Environmental Protection, 172(December 2022), 1072–1086. https://doi.org/10.1016/j.psep.2023.03.004
  62. Park, J. C., Namkung, H., Yoon, S. P., Seo, H. S., Xu, L. H., & Kim, H. T. (2020). Influence of phosphorus on ash fouling deposition of hydrothermal carbonization sewage sludge fuel via drop tube furnace combustion experiments. Journal of the Energy Institute, 93 (6), 2399–2408. https://doi.org/10.1016/j.joei.2020.07.014
  63. Peng, C., Zhai, Y., Zhu, Y., Xu, B., Wang, T., Li, C., & Zeng, G. (2016). Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. Fuel, 176, 110–118. https://doi.org/10.1016/j.fuel.2016.02.068
  64. Poudel, J., Ohm, T. I., Lee, S. H., & Oh, S. C. (2015). A study on torrefaction of sewage sludge to enhance solid fuel qualities. Waste Management, 40, 112–118. https://doi.org/10.1016/j.wasman.2015.03.012
  65. Prajitno, H., Zeb, H., Park, J., Ryu, C., & Kim, J. (2017). Efficient renewable fuel production from sewage sludge using a supercritical fluid route. Fuel, 200, 146–152. https://doi.org/10.1016/j.fuel.2017.03.061
  66. Progiou, A. G., Sebos, I., Zarogianni, A., Tsilibari, E. M., Adamopoulos, A. D., & Varelidis, P. (2022). IMPACT OF COVID-19 PANDEMIC ON AIR POLLUTION : THE CASE OF ATHENS , GREECE. Environmental Engineering and Management Journal, 21(5), 879–889. https://doi.org/10.30638/eemj.2022.080
  67. Pulka, J., Wiśniewski, D., Gołaszewski, J., & Białowiec, A. (2016). Is the biochar produced from sewage sludge a good quality solid fuel? Archives of Environmental Protection, 42 (4), 125–134. https://doi.org/10.1515/aep-2016-0043
  68. Roslan, S. Z., Zainudin, S. F., Aris, A. M., Chin, K. B., Musa, M., Daud, A. R. M., & Hassan, S. S. A. S. (2023). Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel : Influences of Process Conditions on the Energetic Properties of Hydrochar. Energies, 16 (5), 2483. https://doi.org/https://doi.org/10.3390/en16052483
  69. Roslan, S. Z., Zainudin, S. F., Aris, A. M., Chin, K. B., Rafizan, A., Daud, M., Zainol, M. M., & Shatir, S. (2024). Combustion reactivity of sewage sludge hydrochar derived from hydrothermal carbonization via thermogravimetric analysis. Chemical Engineering Communications, 1–12. https://doi.org/10.1080/00986445.2024.2417899
  70. Rozehan, D., Iskandar, S., Fareez, F., & Faradila, N. (2024). A systematic review on employing thermochemical techniques for the production of exceptionally efficient biochar from discarded disposable. Journal of Analytical and Applied Pyrolysis, 180(April), 106527. https://doi.org/10.1016/j.jaap.2024.106527
  71. Schnell, M., Horst, T., & Quicker, P. (2020). Thermal treatment of sewage sludge in Germany: A review. Journal of Environmental Management, 263(April), 110367. https://doi.org/10.1016/j.jenvman.2020.110367
  72. Shan, G., Li, W., Bao, S., Hu, X., Liu, J., Zhu, L., & Tan, W. (2023). Energy and nutrient recovery by spent mushroom substrate-assisted hydrothermal carbonization of sewage sludge. Waste Management, 155, 192–198. https://doi.org/10.1016/j.wasman.2022.11.012
  73. Silva, R. D. V. K., Lei, Z., Shimizu, K., & Zhang, Z. (2020). Hydrothermal treatment of sewage sludge to produce solid biofuel: Focus on fuel characteristics. Bioresource Technology Reports, 11, 100453. https://doi.org/10.1016/j.biteb.2020.100453
  74. Sobek, S., & Werle, S. (2020). Solar pyrolysis of waste biomass: Part 2 kinetic modeling and methodology of the determination of the kinetic parameters for solar pyrolysis of sewage sludge. Renewable Energy, 153, 962–974. https://doi.org/10.1016/j.renene.2020.02.061
  75. Song, E., Park, S., & Kim, H. (2019). Upgrading hydrothermal carbonization (HTC) hydrochar from sewage sludge. Energies, 12 (12), 1–9. https://doi.org/10.3390/en12122383
  76. Świechowski, K., Hnat, M., Stępień, P., Stegenta-Dąbrowska, S., Kugler, S., Koziel, J. A., & Białowiec, A. (2020). Waste to Energy : Solid Fuel Production from Biogas Plant Digestate and Sewage Sludge by Torrefaction-Process Kinetics, Fuel Properties, and Energy Balance. Energies, 13, 3161. https://doi.org/10.3390/en13123161
  77. Syed-Hassan, S. S. A., Wang, Y., Hu, S., Su, S., & Xiang, J. (2017). Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renewable and Sustainable Energy Reviews, 80, 888–913. https://doi.org/10.1016/j.rser.2017.05.262
  78. Trinh, T. N., Jensen, P. A., Dam‐Johansen, K., Knudsen, N. O., & Sørensen, H. R. (2013). Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties. Energy & Fuels, 27(3), 1419–1427. https://doi.org/10.1021/ef301944r
  79. Tsimnadis, K., Kyriakopoulos, G. L., Arabatzis, G., Leontopoulos, S., & Zervas, E. (2023). An Innovative and Alternative Waste Collection Recycling Program Based on Source Separation of Municipal Solid Wastes ( MSW ) and Operating with Mobile Green Points ( MGPs ). Sustainability, 15, 3106. https://doi.org/10.3390/su15043106
  80. Villamil, J. A., Mohedano, A. F., San Martín, J., Rodriguez, J. J., & de la Rubia, M. A. (2020). Anaerobic co-digestion of the process water from waste activated sludge hydrothermally treated with primary sewage sludge. A new approach for sewage sludge management. Renewable Energy, 146, 435–443. https://doi.org/10.1016/j.renene.2019.06.138
  81. Volpe, M., Fiori, L., Merzari, F., Messineo, A., & Andreottola, G. (2020). Hydrothermal carbonization as an efficient tool for sewage sludge valorization and phosphorous recovery. Chemical Engineering Transactions, 80, 199–204. https://doi.org/10.3303/CET2080034
  82. Wang, L., Chang, Y., & Li, A. (2019). Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review. Renewable and Sustainable Energy Reviews, 108, 423–440. https://doi.org/10.1016/j.rser.2019.04.011
  83. Wang, L., Chang, Y., Zhang, X., Yang, F., Li, Y., Yang, X., & Dong, S. (2020). Hydrothermal co-carbonization of sewage sludge and high concentration phenolic wastewater for production of solid biofuel with increased calorific value. Journal of Cleaner Production, 255, 120317. https://doi.org/10.1016/j.jclepro.2020.120317
  84. Wang, R., Wang, C., Zhao, Z., Jia, J., & Jin, Q. (2019). Energy recovery from high-ash municipal sewage sludge by hydrothermal carbonization: Fuel characteristics of biosolid products. Energy, 186, 115848. https://doi.org/10.1016/j.energy.2019.07.178
  85. Wang, Z., Zhai, Y., Wang, T., Peng, C., Li, S., Wang, B., Liu, X., & Li, C. (2020). Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge. Environmental Pollution, 260, 114067. https://doi.org/10.1016/j.envpol.2020.114067
  86. Wilk, M., Czerwińska, K., Śliz, M., & Imbierowicz, M. (2023). Hydrothermal carbonization of sewage sludge: Hydrochar properties and processing water treatment by distillation and wet oxidation. Energy Reports, 9, 39–58. https://doi.org/10.1016/j.egyr.2023.03.092
  87. Wilk, M., Gajek, M., Śliz, M., Czerwińska, K., & Lombardi, L. (2022). Hydrothermal Carbonization Process of Digestate from Sewage Sludge: Chemical and Physical Properties of Hydrochar in Terms of Energy Application. Energies, 15 (18), 6499. https://doi.org/10.3390/en15186499
  88. Wu, S., Wang, Q., Wu, D., Cui, D., Wu, C., Bai, J., Xu, F., Liu, B., Shan, Z., & Zhang, J. (2024). Influence of temperature and process water circulation on hydrothermal carbonization of food waste for sustainable fuel production. Journal of the Energy Institute, 112, 101459. https://doi.org/10.1016/j.joei.2023.101459
  89. Xiang, T., Liu, Y., Guo, Y., Zhang, J., Liu, J., Yao, L., Mao, Y., Yang, X., Liu, J., Liu, R., Jin, X., Shi, J., Qu, G., & Jiang, G. (2024). Occurrence and Prioritization of Human Androgen Receptor Disruptors in Sewage Sludges Across China. Environmental Science & Technology, 58, 10309–10321. https://doi.org/10.1021/acs.est.4c02476
  90. Xu, Z.-X., Xu, L., Cheng, J.-H., He, Z.-X., Wang, Q., & Hu, X. (2018). Investigation of pathways for transformation of N-heterocycle compounds during sewage sludge pyrolysis process. Fuel Processing Technology, 182, 37–44. https://doi.org/10.1016/j.fuproc.2018.10.020
  91. Yokoyama, S. (1996). Organic composition of liquidized sewage sludge. Biomass and Bioenergy, 10 (1), 37–40. https://doi.org/10.1016/0961-9534(95)00056-9
  92. Yong, Z. J., Bashir, M. J. K., Ng, C. A., Sethupathi, S., & Lim, J. W. (2019). Sustainable Waste-to-Energy Development in Malaysia : Appraisal of Environmental , Financial , and Public Issues Related with Energy Recovery from Municipal Solid Waste. Processes, 7, 676. https://doi.org/10.3390/pr7100676
  93. Zafeiriou, E., Spinthiropoulos, K., Tsanaktsidis, C., & Garefalakis, S. (2022). Energy and Mineral Resources Exploitation in the Delignitization Era : The Case of Greek Peripheries Energy and Mineral Resources Exploitation in the Delignitization Era : The Case of Greek Peripheries. Energies, 15, 4732. https://doi.org/10.3390/en15134732
  94. Zaharah, S., Muzakkir, R., Zainol, M., Bikane, K., Shatir, S., & Hassan, A. S. (2024). Hydrothermal carbonization of sewage sludge for hydrochar production : optimization of operating conditions using Box ‑ Behnken design coupled with response surface methodology. Biomass Conversion and Biorefinery, 1–17. https://doi.org/10.1007/s13399-024-05729-5
  95. Zaini, M. S. M., Arshad, M., & Syed-Hassan, S. S. A. (2023). Adsorption isotherm and kinetic study of methane on palm kernel shell-derived activated carbon. Journal of Bioresources and Bioproducts, 8(1), 66–77. https://doi.org/10.1016/j.jobab.2022.11.002
  96. Zapałowska, A. (2023). Physiological and Morphological Implications of Using Composts With Different Compositions in the Production of Cucumber Seedlings. International Journal of Molecular Sciences, 24(18), 14400. https://doi.org/10.3390/ijms241814400
  97. Zawadzki, P., & Głodniok, M. (2020). Environmental Safety Assessment Of Fertilizer Products. Polish Journal of Environmental Studies, 30(1), 11–22. https://doi.org/10.15244/pjoes/120519
  98. Zhan, H., Zhuang, X., Zhang, S., Chang, G., Wang, X., & Zeng, Z. (2022). Evaluation on the enhanced solid biofuel from co-hydrothermal carbonization of pharmaceutical biowastes with lignite. Fuel, 318, 123626. https://doi.org/10.1016/j.fuel.2022.123626
  99. Zhang, J. hong, Lin, Q. mei, & Zhao, X. rong. (2014). The hydrochar characters of municipal sewage sludge under different hydrothermal temperatures and durations. Journal of Integrative Agriculture, 13 (3), 471–482. https://doi.org/10.1016/S2095-3119(13)60702-9
  100. Zhang, X., Chen, S., Ai, F., Jin, L., Zhu, N.-Z., & Meng, X. (2021). Identification of Industrial Sewage Sludge Based on Heavy Metal Profiles: A Case Study of Printing and Dyeing Industry. Environmental Science and Pollution Research, 29(8), 12377–12386. https://doi.org/10.1007/s11356-021-16569-5
  101. Zhang, X., Li, X., Li, R., & Wu, Y. (2020). Hydrothermal Carbonization and Liquefaction of Sludge for Harmless and Resource Purposes: A Review. Energy & Fuels, 34(11), 13268–13290. https://doi.org/10.1021/acs.energyfuels.0c02467
  102. Zhao, P., Shen, Y., Ge, S., & Yoshikawa, K. (2014). Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization. Energy Conversion and Management, 78, 815–821. https://doi.org/10.1016/j.enconman.2013.11.026
  103. Zhen, G., Lu, X., Kato, H., Zhao, Y., & Li, Y. (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion : Current advances , full- scale application and future perspectives. Renewable and Sustainable Energy Reviews, 69, 559–577. https://doi.org/10.1016/j.rser.2016.11.187
  104. Zheng, Q., Li, Z., & Watanabe, M. (2022). Production of solid fuels by hydrothermal treatment of wastes of biomass, plastic, and biomass/plastic mixtures: A review. Journal of Bioresources and Bioproducts, 7(4), 221–244. https://doi.org/10.1016/j.jobab.2022.09.004
  105. Zheng, X., Chen, W., Ying, Z., Jiang, Z., Ye, Y., Wang, B., Feng, Y., & Dou, B. (2020). Structure-Reactivity Correlations in Pyrolysis and Gasification of Sewage Sludge Derived Hydrochar: Effect of Hydrothermal Carbonization. Energy and Fuels, 34 (2), 1965–1976. https://doi.org/10.1021/acs.energyfuels.9b04275
  106. Zhou, J., Liu, S., Zhou, N., Fan, L., Zhang, Y., Peng, P., Anderson, E., Ding, K., Wang, Y., Liu, Y., Chen, P., & Ruan, R. (2018). Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization. Bioresource Technology, 256, 295–301. https://doi.org/10.1016/j.biortech.2018.02.034

Last update:

No citation recorded.

Last update: 2025-10-20 22:51:13

No citation recorded.