skip to main content

Advanced one-dimensional heterogeneous model for high temperature water gas shift membrane reactors

1Laboratory of Process Engineering, Computer Science and Mathematics, Department of Process Engineering (LIPIM), National School of Applied Sciences of Khouribga, Sultan Moulay Slimane University, Bd Béni Amir, BP 77, 25000, Khouribga, Morocco

2Laboratory of Materials, Processes, Environment and Quality (LMPEQ), National School of Applied Sciences of Safi, Cadi Ayyad University, Route Sidi Bouzid BP 63, 46000 Safi, Morocco

Received: 17 Mar 2025; Revised: 15 Jun 2025; Accepted: 10 Jul 2025; Available online: 16 Jul 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

To predict the behavior of small-scale WGS membrane reactors, a new model based on the 1D heterogeneous approach was developed. Unlike most studies, which rely on 1D pseudo-homogeneous models—typically limited to reactors filled with small catalyst particles which are prone to misestimating catalytic effectiveness when larger catalyst grains are used in which mass transfer resistance is usually considered only within the dense membrane layer which a valid assumption only when this layer is thick, the proposed model adapts to a wide range of catalyst sizes and geometries and also accounts for resistance in the porous stainless steel support of the membrane. This makes it suitable when the dense layer is thin.Comparison with experimental data under various conditions validated the model’s ability to predict the behavior of reactors packed with large catalyst particles (Vgrain ≈ 169 mm³). Therefore, the developed 1D heterogeneous model accurately predicts membrane reactor behavior without resorting to more complex 2D models. Simulations highlighted the significant influence of particle geometry on the catalyst effectiveness factor throughout the reactor, while its impact on carbon monoxide conversion, hydrogen partial pressure, and the temperature profile is especially pronounced near the reactor inlet. Additionally, results showed that sweep gas use accelerates the reaction and aids hydrogen permeation. Finally, CO conversion in the membrane reactor reached 1.3 times that of a conventional fixed-bed reactor.

Fulltext View|Download
Keywords: Catalyst geometry; effectiveness factor; membrane reactor; permeate zone; sweep gas

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Abdel-Hamid, A., Mourad,I., Ghasem, M.N., & Alraeesi, A.Y. (2018). Modelling and Simulation of Hydrogen Production via Water Gas Shift Membrane Reactor. International Journal of Chemical Engineering and Applications, 9(4), 112-118. https://doi.org/ 10.18178/ijcea.2018.9.4.709
  2. Adrover, M.E., López, E., Borio, D.O., & Pedernera, M.N. (2009a). Simulation of a membrane reactor for the WGS reaction: Pressure and thermal effects. Chemical Engineering Journal, 154(1-3), 196-202. https://doi.org/10.1016/j.cej.2009.04.057
  3. Adrover, M.E., Lopez, E., Borio, D.O., & Pedernera, M.N. (2009b). Theoretical Study of a Membrane Reactor for the Water Gas Shift Reaction Under nonisothermal Conditions. AIChE Journal, 55 (12), 3206-3213. https://doi.org/10.1002/aic.11929
  4. Adrover, M.E., Borio, D., & Pedernera, M. (2017). Comparison between WGS membrane reactors operating with and without sweep gas: Limiting conditions for co-current flow. International Journal of Hydrogen Energy, 42(8), 5139-5149. https://doi.org/10.1016/j.ijhydene.2016.11.075
  5. Alihellal, D., & Chibane, L. (2016a). Simulation study of the effect of water removal from Fischer–Tropsch products on the process performance using a hydrophilic membrane reactor. Reaction Kinetics, Mechanisms and Catalysis, 117, 605-621. https://doi.org/10.1007/s11144-015-0961-x
  6. Alihellal, D., & Chibane, L. (2016b). Comparative Study of the Performance of Fischer–Tropsch Synthesis in Conventional Packed Bed and in Membrane Reactor Over Iron- and Cobalt-Based Catalysts. Arabian Journal for Science and Engineering, 41, 357-369. https://doi.org/10.1007/s13369-015-1836-1
  7. Alihellal, D., & Chibane, L. (2019). Modeling and simulation of the water gas shift reaction for the hydrogen production in two membrane reactors, , First International Workshop On Environmental Engineering, Setif- Algeria (2019)
  8. Alihellal, D., Hadjam, S., & Chibane, L. (2024). Mathematical modeling and evaluation of permeation and membrane separation performance for Fischer–Tropsch products in a hydrophilic membrane reactor. Chemical Product and Process Modeling, 19(3), 433-446. https://doi.org/10.1515/cppm-2023-0016
  9. Augustine, A.S., Ma, Y.H., & Kazantzis, N.K. (2011). High pessure palladium membrane reactor for the high temperature water gas shift reaction. International Journal of Hydrogen Energy, 36 (9), 5350-5360. https://doi.org/10.1016/j.ijhydene.2011.01.172
  10. Basile, A., Curcio, S., Bagnato, G., Liguori, S., Jokar, S.M., & Iulianelli, A. (2015). Water gas shift reaction in membrane reactors: Theoretical investigation by artificial neural networks model and experimental validation. International Journal of Hydrogen Energy, 40(17), 5897-5906. https://doi.org/10.1016/j.ijhydene.2015.03.039
  11. Bishop, B.A., & Lima, F.V. (2020). Modeling, Simulation, and Operability Analysis of a Nonisothermal, Countercurrent, Polymer Membrane Reactor. Processes, 8(1), 78. https://doi.org/10.3390/pr8010078
  12. Boutikos, P., & Nikolakis, V. (2010). A simulation study of the effect of operating and design parameters on the performance of a water gas shift membrane reactor. Journal of Membrane Science, 350(1-2), 378-386. https://doi.org/10.1016/j.memsci.2010.01.014
  13. Brunetti, A., Caravella, A., Barbieri, G., & Drioli, E. (2007). Simulation study of water gas shift reaction in a membrane reactor. Journal of Membrane Science, 306(1-2), 329-340. https://doi.org/10.1016/j.memsci.2007.09.009
  14. Coronel, L., Múnera, J.F., Lombardo, E.A., & Cornaglia, L.M. (2011). Pd based membrane reactor for ultra-pure hydrogen production through the dry reforming of methane. Experimental and modeling studies. Applied Catalysis A: General, 400(1-2), 185-194. https://doi.org/10.1016/j.apcata.2011.04.030
  15. Chein, R.Y., Chen, Y.C., Chyou, Y.P., & Chung, J.N. (2014). Three-dimensional numerical modeling on high pressure membrane reactors for high temperature water-gas shift reaction. International Journal of Hydrogen Energy, 39(28), 15517-15529. https://doi.org/10.1016/j.ijhydene.2014.07.113
  16. Eddi, I., & Chibane, L. (2020). Performance assessment of high temperature water-gas-shift reaction for hydrogen generation and its purification in a membrane reactor/separator of hydrogen or of carbon dioxide. Chemical Product and Process Modeling,16(4), 261-280. https://doi.org/10.1515/cppm-2019-0134
  17. El Bazi, W., Bideq, M., El Abidi, A., Yadir, S., & Ouartassi, B. (2022). Numerical Study of a Water Gas Shift Fixed Bed Reactor Operating at Low Pressures. Bulletin of Chemical Engineering Reaction and Catalysis, 17(2), 304-321. https://doi.org/10.9767/bcrec.17.2.13510.304-321
  18. El Bazi, W., Bideq, M., Yadir, S., & El Abidi, A. (2023). Efects of catalyst distribution, particle geometry, and process conditions on the behavior of a water gas shift reactor under moderate pressures: a modeling study. Reaction Kinetics, Mechanisms and Catalysis, 136, 1859-1890. https://doi.org/10.1007/s11144-023-02431-x
  19. Gao, W., Zhou, T., Gao, Y., & Wang, Q. (2019). Enhanced water gas shift processes for carbon dioxide capture and hydrogen production. Applied Energy. 254, 113700. https://doi.org/10.1016/j.apenergy.2019.113700
  20. Garshasbi, A., Chen, H., Cao, M., Karagöz, S., Ciora, Jr R.J., Liu, P.K.T., Manousiouthakis ,V.I., & Tsotsis, T.T. (2019). Membrane-based reactive separations for process intensification during power generation. Catalysis Today ,331, 18–29. https://doi.org/10.1016/j.cattod.2017.10.039
  21. Gosiewski, K., Warmuzinski, K., & Tanczyk, M. (2010). Mathematical simulation of WGS membrane reactor for gas from coal gasification. Catalysis Today, 156(3-4), 229-236. https://doi.org/10.1016/j.cattod.2010.02.031
  22. Huang, J., El-Azzami, L., & Winston Ho, W.S. (2005). Modeling of CO2-selective water gas shift membrane reactor for fuel cell. Journal of Membrane Science, 261(1-2), 67-75. https://doi.org/10.1016/j.memsci.2005.03.033
  23. Huang, H., Samsun,R.C., Peters, R., & Stolten, D. (2022). CFD modeling of a membrane reactor concept for integrated CO2 capture and conversion. React. Chem. Eng, 7(12), 2573-258. https://doi.org/10.1039/D2RE00282E
  24. Israni, S.H., & Harold, M.P. (2011). Methanol steam reforming in single-fiber packed bed Pd–Ag membrane reactor: Experiments and modeling. Journal of Membrane Science, 369(1-2), 375-387. https://doi.org/10.1016/j.memsci.2010.12.029
  25. Karagoz, S., Cruz, F.E.D., Tsotsis, T.T., & Manousiouthakis, V.I. (2018). Multi-Scale Membrane Reactor (MR) modeling and Simulation for the Water Gas Shift Reaction. Chemical Engineering and Processing - Process Intensification, 133, 245-262. https://doi.org/10.1016/j.cep.2018.09.012
  26. Karagoz, S., Tsotsis, T.T., & Manousiouthakis, V.I. (2020). Multi-scale model based design of membrane reactor/separator processes for intensified hydrogen production through the water gas shift reaction. International Journal of Hydrogen Energy, 45(12), 7339-7353. https://doi.org/10.1016/j.ijhydene.2019.05.118
  27. Keiski, R.L., Desponds,O ., Chang, Y-F., & Somorjai, G.A. (1993). Kinetics of the water-gas shift reaction over several alkane activation and water-gas shift catalysts. Applied Catalysis A: General. 101(2), 317-338. https://doi.org/10.1016/0926-860X(93)80277-W
  28. Lundin, S-T. B., Miklautz, M., Ikeda, A., Hasegawa, Y., & Oyama, S.T. (2023). Criteria for the use of 1D and 2D models in catalytic membrane reactor modeling. Chemical Engineering Journal, 477, 147007. https://doi.org/10.1016/j.cej.2023.147007
  29. Ma, D., & Lund, C.R.F. (2003). Assessing High-Temperature Water-Gas Shift Membrane Reactors. Ind. Eng. Chem. Res, 42(4), 711–717. https://doi.org/10.1021/ie020679a
  30. Makertiharta,I G B N., Rizki, Z., Zunita, M., & Dharmawijay, P.T. (2017). Simulation of Water Gas Shift Zeolite Membrane Reactor. IOP Conf. Ser.: Mater. Sci. Eng, 214 012013. https://doi.org/10.1088/1757-899X/214/1/012013
  31. Mandic, M., Branislav, T., Zivanic, L., Nikacevic, N., & Bukur, DB. (2017). Efects of catalyst activity, particle size and shape, and process conditions on catalyst efectiveness and methane selectivity for Fischer–Tropsch reaction: a modeling study. Ind Eng Chem Res, 56(10), 2733–2745. https://doi.org/10.1021/acs.iecr.7b00053
  32. Marin, P., Diez, F.V., & Ordonez, S. (2012). Fixed bed membrane reactors for WGSR-based hydrogen production: Optimisation of modelling approaches and reactor performance. International Journal of Hydrogen Energy, 37(6), 4997-5010. https://doi.org/10.1016/j.ijhydene.2011.12.027
  33. Markatos, N.C., Vogiatzis, E., Koukou, M.K., & Papayannakos, N. (2005). Membrane Reactor Modelling : A Comparative Study to Evaluate the Role of Combined Mass and Heat Dispersion in Large-scale Adiabatic Membrane Modules. Chemical Engineering Research and Design, 83(10), 1171-1178. https://doi.org/10.1205/cherd.04299
  34. Mendes, D., S, Sa., Tosti, S., Sousa, J.M., Madeira, L.M., & Mendes, A. (2011). Experimental and modeling studies on the low-temperature water-gas shift reaction in a dense Pd–Ag packed-bed membrane reactor. Chemical Engineering Science, 66(11), 2356-2367. https://doi.org/10.1016/j.ces.2011.02.035
  35. Meng, L., Ovale Encinia, O., & Lin, J.Y.S. (2021). Catalyst-Free Ceramic-Carbonate Dual-Phase Membrane Reactors for High-Temperature Water Gas Shift: A Simulation Study. Ind. Eng. Chem. Res, 60(9), 3581–3588. https://doi.org/10.1021/acs.iecr.1c00541
  36. Olatunji, S.O., & Camacho, L.M. (2018). Heat and Mass Transport in Modeling Membrane Distillation Configurations: A Review. Frontiers in Energy Research, 6, 1-18. https://doi.org/10.3389/fenrg.2018.00130
  37. Oyama, S.T., & Hacarlioglu, P. (2009). The boundary between simple and complex descriptions of membrane reactors: The transition between 1-D and 2-D analysis. Journal of Membrane Science, 337(1-2), 188-199. https://doi.org/10.1016/j.memsci.2009.03.040
  38. Piemonte, V., De Falco, M., & Basile, A. (2015). Performance Assessment of Water Gas Shift Membrane Reactors by a Two-dimensional Model. Energy Sources, Part A: Recovery, Utilization, and environmental effects, 37(20), 2174-2182. https://doi.org/10.1080/15567036.2012.691945
  39. Radcliffe, A.J., Singh, R.P., Berchtold, K.A., & Lima, V.F. (2016). Modeling and Optimization of High-Performance Polymer Membrane Reactor Systems for Water–Gas Shift Reaction Applications. Processes, 4(2), 8. https://doi.org/10.3390/pr4020008
  40. Sanz, R., Calles, J.A., Ordóñez, S., Marín, P., Alique, D., & Furones, L. (2013). Modelling and simulation of permeation behaviour on Pd/PSS composite membranes prepared by “pore-plating” method. Journal of Membrane Science, 446, 410-421. https://doi.org/10.1016/j.memsci.2013.06.060
  41. Sanz, R., Calles, J.A., Alique, D., & Furones, L. (2014). H2 production via water gas shift in a composite Pd membrane reactor prepared by the pore-plating method. International Journal of Hydrogen Energy, 39(9), 4739-4748. https://doi.org/10.1016/j.ijhydene.2013.12.145
  42. Sanz, R., Calles, J.A., Alique, D., Furones, L., Ordonez, S., & Marın, P. (2015). Hydrogen production in a Pore-Plated Pd-membrane reactor. :Experimental analysis and model validation for the Water Gas Shift reaction. International Journal of Hydrogen Energy, 40(8), 3472-3484. https://doi.org/10.1016/j.ijhydene.2014.11.120
  43. Smith, R.J.B., Loganathan, M., & Shantha, M.S. (2011). CFD Simulation of Water Gas Shift Membrane Reactor—Pressure Effects on the Performance of the Reactor. Chemical Product and Process Modeling, 6(1), Article 33. https://doi.org/10.2202/1934-2659.1595
  44. Villermaux, J. (1993) Génie de la réaction chimique, 2nd edn. Tec & Doc, Paris
  45. Wang, Y-N., Xu, Y-Y., Xiang, H-W., Li, Y-W., & Zhang, B-J. (2001). Modeling of catalyst pellets for Fischer–Tropsch synthesis. Ind Eng Chem Res, 40(20), 4324–4335. https://doi.org/10.1021/ie010080v
  46. Wirawan, S.K., Creaser, D., Bendiyasa, I.M., & Sediawan, W.B. (2012). CO2 Selective Water Gas Shift Membrane Reactor : Modeling and Simulation. AJCHE, 12(1), 59-72. https://doi.org/10.22146/ajche.49756
  47. Zhang, L., Zhang, HT., Ying, WY., & Fang ,DY. (2014). The simulation of an industrial fxed bed reactor for methanol dehydration to dimethyl ether. Energy Sources A, 36(19), 2166–2174. https://doi.org/10.1080/15567036.2012.750404

Last update:

No citation recorded.

Last update: 2025-09-10 21:22:21

No citation recorded.