skip to main content

Parametric study on the hydrothermal synthesis of fluorescent p-doped carbon quantum dots from banana peels (Musa acuminata) and their photocatalytic performance towards hexavalent chromium reduction

Department of Chemical Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, College, Los Baños, Laguna, 4031, Philippines

Received: 17 May 2025; Revised: 16 Jul 2025; Accepted: 17 Aug 2025; Available online: 31 Aug 2025; Published: 1 Sep 2025.
Editor(s): Antonius Indarto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Hexavalent chromium (Cr(VI)) represents a significant risk to both human health and the environment. Photocatalysis offers a promising method for reducing Cr(VI) to the less toxic Cr(III) state, which can be easily precipitated and removed. Carbon quantum dots (CQDs) have become prominent in photocatalysis owing to their facile synthesis, light-harvesting capacity, and electron transfer properties. In this study, banana peel (Musa acuminata) powder containing approximately 59.58 ± 7.43% (w/w) carbohydrates and 15.67 ± 0.15% (w/w) moisture, serves as a sustainable carbon source for synthesizing CQDs, through the hydrothermal method. Phosphoric acid was introduced as a dopant and catalyst, promoting the formation of fluorescent phosphorus-doped carbon quantum dots (P-CQDs). These P-CQDs were then used as photocatalysts for the visible light-induced reduction of Cr(VI). This research employed a 2k factorial experimental design to evaluate the effects of hydrothermal synthesis conditions such as phosphoric acid-to-banana peel powder mass ratio (1:1 to 2:1), reaction temperature (140°C to 180°C), and reaction time (4 to 8 hours) on the photoreduction of 50ppm Cr(VI) in synthetic wastewater. Photoreduction efficiencies ranged from 57.3% to 85.4% after 2 hours of visible light irradiation. Analysis of Variance (ANOVA) results at a 95% confidence interval demonstrated that all three factors significantly influenced the reduction efficiency. Furthermore, UV-Vis spectroscopy of P-CQDs at varying hydrothermal synthesis conditions revealed characteristic absorption bands at π–π* transitions of the C=C bonds in the core structure and n–π* transitions of C=O/P domains on the surface. Meanwhile, FTIR analysis of P-CQD samples has shown several peaks corresponding to hydroxyl, carbonyl, carboxyl and phosphorus-containing functional groups. The synthesized compound also exhibited strong photoluminescence with blue-green emission under 365 nm UV light.  These findings are crucial for further research aimed at optimizing the synthesis of sustainable P-CQD photocatalysts.

Fulltext View|Download
Keywords: Carbon quantum dots; p-doped; banana peels; phosphoric acid; photocatalysis; hexavalent chromium
Funding: Department of Science and Technology – Engineering Research and Development for Technology (DOST-ERDT)

Article Metrics:

Article Info
Section: Regional Symposium of Chemical Engineering 2024
Language : EN
  1. Ahmed, Z., El-Sharnouby, G., & El-Waseif, M. (2021). Use of Banana Peel As A By-Product to Increase The Nutritive Value of The Cake. Journal of Food and Dairy Sciences, 12(4), 87-97. https://doi.org/10.21608/jfds.2021.167053
  2. Akbar, K., Moretti, E., & Vomiero, A. (2021). Carbon Dots for Photocatalytic Degradation of Aqueous Pollutants: Recent Advancements. Advanced Optical Materials, 9(17), 2100532. https://doi.org/10.1002/adom.202100532
  3. Alafeef, M., Srivastava, I., Adutya, T., & Pan,D. (2024). Carbon Dots: From Synthesis to Unraveling the Fluorescence Mechanism. Small, 20(4), 2303937. https://doi.org/10.1002/smll.202303937
  4. Alkian, I., Sutanto, I., Hadiyanto, H. (2022). Quantum yield optimization of carbon dots using response surface methodology and its application as control of Fe3+ion levels in drinking water. Mater. Res. Express 9 015702. https://doi.org/10.1088/2053-1591/ac3f60
  5. Alzate Acevedo, S., Díaz Carrillo, Á. J., Flórez-López, E., & Grande-Tovar, C. D. (2021). Recovery of Banana Waste-Loss from Production and Processing: A Contribution to a Circular Economy. Molecules, 26(17), 5282. https://doi.org/10.3390/molecules26175282
  6. AOAC – Association of Official Agricultural Chemists (2016). Official Methods of Analysis. 16th ed
  7. Atchudan, R., Edison, T. N. J. I., Perumal, S., Vinodh, R., Sundramoorthy, A. K., Babu, R. S., & Lee, Y. R. (2021). Leftover Kiwi Fruit Peel-Derived Carbon Dots as a Highly Selective Fluorescent Sensor for Detection of Ferric Ion. Chemosensors, 9(7), 166. https://doi.org/10.3390/chemosensors9070166
  8. Atchudan, R., Jebakumar Immanuel Edison, T. N., Shanmugam, M., Perumal, S., Somanathan, T., & Lee, Y. R. (2020). Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E: Low-Dimensional Systems and Nanostructures, 114417. https://doi.org/10.1016/j.physe.2020.114417
  9. ATSDR - Agency for Toxic Substances and Disease Registry (2000). Toxicological Profile for Chromium. U.S. Department of Health and Human Services, Public Health Service. https://www.atsdr.cdc.gov/toxprofiles/tp7.pdf
  10. Azami, M., Wei, J., Valizadehderakhshan, M., Jayapalan, A., & Ayodele, O. O. (2023). Effect of Doping Heteroatoms on the Optical Behaviors and Radical Scavenging Properties of Carbon Nanodots. The Journal of Physical Chemistry C, 127(23), 10178-10190. https://doi.org/10.1021/acs.jpcc.3c00953
  11. Baird, R., & Bridgewater, L. (2017). Standard methods for the examination of water and wastewater. 23rd edition. Washington, D.C., American Public Health Association
  12. Bhati, A., Anand, S. R., Saini, D., Gunture, & Sonkar, S. K. (2019). Sunlight-induced photoreduction of Cr(VI) to Cr(III) in wastewater by nitrogen-phosphorus-doped carbon dots. Npj Clean Water, 2(1). https://doi.org/10.1038/s41545-019-0036-z
  13. Burstein, G. T. (2010). Passivity and Localized Corrosion. Shreir’s Corrosion, 2, 731–752. https://doi.org/10.1016/b978-044452787-5.00198-0
  14. Cai, Z., Li, F., Rong, M., Lin, L., Yao, Q., Huang, Y., Wang, X. (2019). Introduction. Novel Nanomaterials for Biomedical, Environmental and Energy Applications, 1–36. https://doi.org/10.1016/b978-0-12-814497-8.00001-1
  15. Carbonaro, Corpino, Salis, Mocci, Thakkar, Olla, & Ricci. (2019). On the Emissionof Carbon Dots: Reviewing Data and Discussing Models. C — Journal of Carbon Research, 5(4), 60. https://doi.org/10.3390/c5040060
  16. Çetin, D., Dönmez, S., & Dönmez, G. (2008). The treatment of textile wastewater including chromium(VI) and reactive dye by sulfate-reducing bacterial enrichment. Journal of Environmental Management, 88(1), 76–82. https://doi.org/10.1016/j.jenvman.2007.01.019
  17. Chen, Y., An, D., Sun, S., Gao, J., & Qian, L. (2018). Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon. Materials, 11(2), 269. https://doi.org/10.3390/ma11020269
  18. Coates, J. (2006). Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry. https://doi.org/10.1002/9780470027318.a5606
  19. DA-Department of Agriculture (2018). Philippine Banana Industry Roadmap 2019-2022. https://www.da.gov.ph/wp-content/uploads/2019/06/Philippine-Banana-Industry-Roadmap-2019-2022.pdf
  20. Das, S., Ngashangva, L., & Goswami, P. (2021). Carbon Dots: An Emerging Smart Material for Analytical Applications. Micromachines, 12(1), 84. https://doi.org/10.3390/mi12010084
  21. Dastgheib, S. A., & Rockstraw, D. A. (2001). Pecan Shell Activated Carbon: Synthesis, Characterization, and Application for the Removal of Copper from Aqueous Solution. Carbon, 39(12), 1849–1855. https://doi.org/10.1016/s0008-6223(00)00315-8
  22. FAO UN - Food and Agriculture Organization of the United Nations (2022). Banana Market Review 2021. Rome. https://www.fao.org/3/cc1610en/cc1610en.pdf
  23. Feumba, D.R., Ashwini R.P., & Ragu, S.M. (2016). Chemical Composition of Some Selected Fruit Peels. European Journal of Food Science and Technology, 4(4). 12-21. https://www.researchgate.net/publication/326579276_Chemical_composition_of_some_selected_fruit_peels
  24. Gomez-Montaño, F. J., Bolado-Garcia, V.E., & Blasco-Lopez, G. (2020). Compositional and antioxidant analysis of peels from different banana varieties (Musa spp.) for their possible use in developing enriched flours. Acta Universitaria, 29, e2260. https://doi.org/10.15174/au.2019.2260
  25. Goswami, J.Rohman, S., Guha, A. Basyach, P., Sonowal, K., Borah, S., & Saikia, L., & Hazarika, P. (2022). Phosphoric acid assisted synthesis of fluorescent carbon dots from waste biomass for detection of Cr(VI) in aqueous media. Materials Chemistry and Physics. 286. 126133. https://doi.org/10.1016/j.matchemphys.2022.126133
  26. Happi Emaga, T., Andrianaivo, R. H., Wathelet, B., Tchango, J. T., & Paquot, M. (2007). Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chemistry, 103(2), 590–600. https://doi.org/10.1016/j.foodchem.2006.09.006
  27. Hassaan, M. A., El-Nemr, M. A., Elkatory, M. R., & El-Din, G. T. (2023). Principles of Photocatalysts and Their Different Applications: A Review. Topics in Current Chemistry, 381(1), 31. https://doi.org/10.1007/s41061-023-00444-7
  28. Hoang, A.T., Pandey, A., Chen, W.H., Ahmed, S.F., Nizetic, S., Ng, K.H., Said, Z., Duong, X.Q., Agbulut, U., (2023).Hadiyanto, H.;Hydrogen Production by Water Splitting with Support of Metal and Carbon-Based Photocatalysts. ACS Sustainable Chem. Eng. 11(4), 1221–1252
  29. Jagtoyen, M., & Derbyshire, F. (1998). Activated Carbons from Yellow Poplar and White Oak by H3PO4 Activation. Carbon, 36(7-8), 1085–1097. https://doi.org/10.1016/s0008-6223(98)00082-7
  30. Jiang, K., Feng, X., Gao, X., Wang, Y., Cai, C., Li, Z., & Lin, H. (2019). Preparation of Multicolor Photoluminescent Carbon Dots by Tuning Surface States. Nanomaterials, 9(4), 529. https://doi.org/10.3390/nano9040529
  31. John, V. L., Nair, Y., & Vinod, T. P. (2021). Doping and Surface Modification of Carbon Quantum Dots for Enhanced Functionalities and Related Applications. Particle & Particle Systems Characterization, 38(11), 2100170. https://doi.org/10.1002/ppsc.202100170
  32. Kailasa, S. K., Ha, S., Baek, S. H., Phan, L. M. T., Kim, S., Kwak, K., & Park, T. J. (2019). Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications. Materials Science and Engineering: C, 98, 834–842. https://doi.org/10.1016/j.msec.2019.01.002
  33. Kalaiyarasan, G., & Joseph, J. (2017). Determination of Vitamin B12 via pH-Dependent Quenching of the Fluorescence of Nitrogen-Doped Carbon Quantum Dots. Microchimica Acta, 184(10), 2017, 3883–3891. https://doi.org/10.1007/s00604-017-2421-y
  34. Kalaiyarasan, G., Joseph, J., & Kumar, P. (2020). Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection. ACS Omega, 5 (35), 22278-22288. https://doi.org/10.1021/acsomega.0c02627
  35. Kropschot, S.J., & Doebrich, J. (2010). Chromium—Makes Stainless Steel Stainless. U.S. Geological Survey-Fact Sheet, 3089, 2. https://doi.org/10.3133/fs20103089
  36. Li, X., Zhang, S., Kulinich, S. A., Liu, Y., & Zeng, H. (2014). Engineering Surface States of Carbon Dots to Achieve Controllable Luminescence for Solid-Luminescent Composites and Sensitive Be2+ Detection. Scientific Reports, 4(1). https://doi.org/10.1038/srep04976
  37. Liu, W., Ning, C., Sang, R., Hou, Q., & Ni, Y. (2021). Lignin-derived graphene quantum dots from phosphorus acid-assisted hydrothermal pretreatment and their application in photocatalysis. Industrial Crops and Products, 171, 113963. https://doi.org/10.1016/j.indcrop.2021.113963
  38. Marqués, M. J., Salvador, A., Morales-Rubio, A. E., & de la Guardia, M. (1998). Analytical methodologies for chromium speciation in solid matrices: a survey of literature. Fresenius’ Journal of Analytical Chemistry, 362(3), 239–248. https://doi.org/10.1007/s002160051067
  39. Memon, J. R., Memon, S. Q., Bhanger, M. I., Memon, G. Z., El-Turki, A., & Allen, G. C. (2008). Characterization of Banana Peel by Scanning Electron Microscopy and FT-IR Spectroscopy and Its Use for Cadmium Removal. Colloids and Surfaces B: Biointerfaces, 66(2), 2008. 260–265. https://doi.org/10.1016/j.colsurfb.2008.07.001
  40. Mohd Salim, R., Khan Chowdhury, A. J., Rayathulhan, R., Yunus, K., & Sarkar, Md. Z. I. (2015). Biosorption of Pb and Cu from Aqueous Solution Using Banana Peel Powder. Desalination and Water Treatment, 57(1), 303–314. https://doi.org/10.1080/19443994.2015.1091613
  41. Muktha, H., Sharath, R., Kottam, N., Smrithi, S. P., Samrat, K., & Ankitha, P. (2020). Green Synthesis of Carbon Dots and Evaluation of Its Pharmacological Activities. BioNanoScience, 10, 731–744. https://doi.org/10.1007/s12668-020-00741-1
  42. Oliveira, T. Í. S., Rosa, M. F., Cavalcante, F. L., Pereira, P. H. F., Moates, G. K., Wellner, N., Azeredo, H. M. C. (2016). Optimization of pectin extraction from banana peels with citric acid by using response surface methodology. Food Chemistry, 198, 113–118. https://doi.org/10.1016/j.foodchem.2015.08.080
  43. Omar, N. A. S., Fen, Y. W., Irmawati, R., Hashim, H. S., Ramdzan, N. S. M., & Fauzi, N. I. M. (2022). A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. Nanomaterials, 12(14), 2365. https://doi.org/10.3390/nano12142365 nano12142365
  44. Omer, K. M., & Hassan, A. Q. (2017). Chelation-Enhanced Fluorescence of Phosphorus Doped Carbon Nanodots for Multi-Ion Detection. Microchimica Acta, 184(7), 2017, 2063–2071. https://doi.org/10.1007/s00604-017-2196-1
  45. Omm-e-Hany, Asia, N., Aamir, A., & Humaira, K. (2018) Determination of chromium in the tannery wastewater, Korangi, Karachi. International Journal of Environmental Sciences & Natural Resources, 15(4), 555920. https://doi.org/10.19080/IJESNR.2018.15.555920
  46. Papaioannou, N., Titirici, M.M., & Sapelkin, A. (2019). Investigating the Effect of Reaction Time on Carbon Dot Formation, Structure, and Optical Properties. ACS Omega, 4(26), 21658–21665. https://doi.org/10.1021/acsomega.9b01798
  47. Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., de la Rosa, G., Hong, J., & Gardea-Torresdey, J. L. (2011). Nanomaterials and the environment: A review for the biennium 2008–2010. Journal of Hazardous Materials, 186(1), 1–15. https://doi.org/10.1016/j.jhazmat.2010.11.020
  48. Prathumsuwan, T., Jamnongsong, S., Sampattavanich, S., & Paoprasert, P. (2018). Preparation of carbon dots from succinic acid and glycerol as ferrous ion and hydrogen peroxide dual-mode sensors and for cell imaging. Optical Materials, 86, 517–529. https://doi.org/10.1016/j.optmat.2018.10.054
  49. Quesada-Plata, F., Ruiz-Rosas, R., Morallón, E., & Cazorla-Amorós, D. (2016). Activated Carbons Prepared through H3PO4-Assisted Hydrothermal Carbonisation from Biomass Wastes: Porous Texture and Electrochemical Performance. ChemPlusChem, 81(12), 1349–1359. https://doi.org/10.1002/cplu.201600412
  50. Rahim, S., Radiman, S., & Hamzah, A. (2012). Inactivation of Escherichia coli Under Fluorescent Lamp using TiO2 Nanoparticles Synthesized Via Sol-Gel Method. Sains Malaysiana. 41, 219-224. https://www.researchgate.net/publication/263848400_Inactivation_of_Escherichia_coli_Under_Fluorescent_Lamp_using_TiO_2_Nanoparticles_Synthesized_Via_Sol_Gel_Method
  51. Ramar, V., Moothattu, S., & Balasubramanian, K. (2018). Metal free, sunlight and white light based photocatalysis using carbon quantum dots from Citrus grandis: A green way to remove pollution. Solar Energy, 169, 120–127. https://doi.org/10.1016/j.solener.2018.04.040
  52. Sa’adah, F., Sutanto, H., Hadiyanto, H., & Alkian, I. (2024). Efficient removal of amoxicillin, ciprofloxacin, and tetracycline from aqueous solution by Cu-Bi2O3 synthesized using precipitation-assisted-microwave. Communications in Science and Technology, 9(1), 170-178. https://doi.org/10.21924/cst.9.1.2024.1444
  53. Saini, D., Aggarwal, R., Sonker, A. K., & Sonkar, S. K. (2021). Photodegradation of Azo Dyes in Sunlight Promoted by Nitrogen–Sulfur–Phosphorus Codoped Carbon Dots. ACS Applied Nano Materials, 4(9), 9303–9312. https://doi.org/10.1021/acsanm.1c01810
  54. Segura-Badilla, O., Kammar-García, A., Mosso-Vázquez, J., Sánchez, R.A., Ochoa-Velasco, C., Hernández-Carranza, P., & Navarro-Cruz, A.R. (2022). Potential use of banana peel (Musa cavendish) as ingredient for pasta and bakery products. Heliyon, 8(10), e11044. https://doi.org/10.1016/j.heliyon.2022.e11044
  55. Shen, L., Liang, S., Wu, W., Liang, R., & Wu, L. (2013). Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Transactions, 42(37), 13649. https://doi.org/10.1039/c3dt51479j
  56. Shu, D., Zhang, J., Ruan, R., Lei, H., Wang, Y., Moriko, Q., Zou, R., Huo, E., Duan, D.,Gan, L., Zhou, D., Zhao, Y., & Dai, L. (2024). Insights into Preparation Methods and Functions of Carbon-Based Solid Acids. Molecules, 29(1), 247. https://doi.org/10.3390/molecules29010247
  57. Stat-Ease Inc. (2018). Design-Expert Software Documentation (Version 11)
  58. Sukmana, H., Bellahsen, N., Pantoja, F., & Hodur, C. (2021). Adsorption and coagulation in wastewater treatment – Review. Progress in Agricultural Engineering Sciences, 17(1), 49–68. https://doi.org/10.1556/446.2021.00029
  59. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metal Toxicity and the Environment. Molecular, Clinical and Environmental Toxicology, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6
  60. Teh, C. Y., Budiman, P. M., Shak, K. P. Y., & Wu, T. Y. (2016). Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment. Industrial & Engineering Chemistry Research, 55(16), 4363–4389. https://doi.org/10.1021/acs.iecr.5b04703
  61. Tungare, K., Bhori, M., Racherla, K. S., & Sawant, S. (2020). Synthesis, characterization and biocompatibility studies of carbon quantum dots from Phoenix dactylifera. 3 Biotech, 10(12), 540. https://doi.org/10.1007/s13205-020-02518-5
  62. Venkateswara Raju, C., Kalaiyarasan, G., Paramasivam, S., Joseph, J., & Senthil Kumar,S. (2019). Phosphorous Doped Carbon Quantum Dots as an Efficient Solid State Electrochemiluminescence Platform for Highly Sensitive Turn-On Detection of Cu2+ Ions. Electrochimica Acta, 135391. https://doi.org/10.1016/j.electacta.2019.135391
  63. Vikneswaran, R., Ramesh, S., & Yahya, R. (2014). Green synthesized carbon nanodots as a fluorescent probe for selective and sensitive detection of Iron(III) ions. Materials Letters, 136, 179–182. https://doi.org/10.1016/j.matlet.2014.08.063
  64. Wang. C., Shi H., Yang, M.,Yao, Z, Zhang, B., Liu, E., Hu, X., Xue, W.,& Fan.,J. (2021). Biocompatible sulfur nitrogen co-doped carbon quantum dots for highly sensitive and selective detection of dopamine. Colloids and Surfaces B: Biointerfaces, 205, 111874. https://doi.org/10.1016/j.colsurfb.2021.111874
  65. Wilbur, S., Abadin, H., & Fay, M. (2012). Toxicological Profile for Chromium. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US). Production, Import/Export, Use, and Disposal. https://www.ncbi.nlm.nih.gov/books/NBK158858/
  66. Xia, C., Zhu, S., Feng, T., Yang, M., & Yang, B. (2019). Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced Science, 6(23),1901316. https://doi.org/10.1002/advs.201901316
  67. Xu, L., Bai, X., Guo, L., Yang, S., Jin, P., & Yang, L. (2018). Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2-x nanocomposite for the efficient photoreduction of Cr(VI) under visible light. Chemical Engineering Journal, 357, 473-486. https://doi.org/10.1016/j.cej.2018.09.172
  68. Yakout, S. M., & Sharaf El-Deen, G. (2011). Characterization of Activated Carbon Prepared by Phosphoric Acid Activation of Olive Stones. Arabian Journal of Chemistry, 70 (S2), 2011. https://doi.org/10.1016/j.arabjc.2011.12.002
  69. Yli-Pentti, A. (2014). Electroplating and Electroless Plating. Comprehensive Materials Processing, 4, 277–306. https://doi.org/10.1016/b978-0-08-096532-1.00413-1
  70. Zhang, H., Wang, H., Wang, Y., & Xin, B. (2020). Controlled synthesis and photocatalytic performance of biocompatible uniform carbon quantum dots with microwave absorption capacity. Applied Surface Science, 512, 145751. https://doi.org/10.1016/j.apsusc.2020.145751
  71. Zhang, S.R., Cai, S.K., Wang, G.Q., Cui, J.Z., & Gao, C.Z. (2021). One-step synthesis of N, P-doped carbon quantum dots for selective and sensitive detection of Fe2+ and Fe3+ and scale inhibition. Journal of Molecular Structure, 1246, 131173. https://doi.org/10.1016/j.molstruc.2021.131173

Last update:

No citation recorded.

Last update: 2025-10-20 16:37:22

No citation recorded.