skip to main content

Modelling and analysis of wind loading effects for heliostat mirrors using computational fluid dynamics

1Department of Mechanical Engineering, University of Engineering and Technology (Main Campus), Lahore, Pakistan

2CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n. 46022 Valencia, Spain

3Mechanical Engineering Department, Faculty of Engineering & Technology, The University of Lahore, Lahore 54800, Pakistan

4 Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania

View all affiliations
Received: 15 Dec 2024; Revised: 19 Jul 2025; Accepted: 30 Aug 2025; Available online: 12 Sep 2025; Published: 1 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study examines the impact of wind forces on the structural integrity of heliostat assemblies in concentrated solar power systems, specifically tailored to local climatic conditions. The objective is to assess how varying elevation angles influence aerodynamic parameters, thereby informing design optimizations for enhanced operational efficiency. A computational fluid dynamics approach, utilizing the standard k-ε turbulence model, second-order implicit time formulation, and the Green-Gauss cell-based method, was employed to simulate wind interactions with a heliostat model at elevation angles of 0°, 30°, 60°, and 90°. The simulation process encompassed model development, mesh refinement, boundary condition setup, and numerical solution techniques. Post-processing analysis focused on aerodynamic characteristics such as drag and lift forces, static and dynamic pressures, turbulent kinetic energy, and turbulence intensity. Results indicate that drag force increases with elevation angle, peaking at 90°, while lift force is maximized at 30°. Additionally, static and dynamic pressures, skin friction coefficients, and turbulence parameters exhibit strong dependence on the heliostat's elevation angle. The minimum values of the skin friction coefficient, drag coefficient, and turbulence intensity were found to be 0.0111, 0.3580, and 11.42%, respectively, at an elevation angle of 0°. Moreover, the finite element analysis of the heliostat structure to evaluate its resistance under wind loading demonstrated structural integrity with acceptable stress and displacement levels. These findings provide valuable insights for engineers and researchers aiming to optimize heliostat structural dimensions, thereby enhancing the economic and operational performance of concentrated solar power systems.

Fulltext View|Download
Keywords: Computational fluid dynamics (CFD); Heliostat mirror, static pressure; turbulent kinetic energy; skin friction; wind loading effects

Article Metrics:

  1. Abd Halim, M. A., Nik Mohd, N. A. R., Mohd Nasir, M. N., & Dahalan, M. N. (2018). The Evaluation of k-ε and k-ω Turbulence Models in Modelling Flows and Performance of S-shaped Diffuser. International Journal of Automotive and Mechanical Engineering, 15(2), 5161-5177. https://doi.org/10.15282/ijame.15.2.2018.2.0399
  2. Abunajeeb, I., Stein, G., & Rotschild, C. (2025). Heliostat accurate control method robust under shading and blocking. Energy Reports, 13, 4087-4094. https://doi.org/10.1016/j.egyr.2025.03.047
  3. Ali, K., & Jifeng, S. (2024). Analysis and Study on the Interference Effect of Tower Heliostats Based on Computational Wind Engineering. Applied Solar Energy, 60(2), 267-280. https://doi.org/10.3103/S0003701X23601527
  4. Bakhshipour, S., Emes, M. J., & Arjomandi, M. (2025). Experimental study of dynamic wind loads on heliostats. Journal of Wind Engineering and Industrial Aerodynamics, 261, 106092. https://doi.org/10.1016/j.jweia.2025.106092
  5. Bakhshipour, S., Emes, M. J., Jafari, A., & Arjomandi, M. (2024). Heliostat wind loads: Effects of the aspect ratio and ground clearance ratio. Solar Energy, 269, 112332. https://doi.org/10.1016/j.solener.2024.112332
  6. Bendjebbas, H., Abdellah-ElHadj, A., & Abbas, M. (2016). Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review. Renewable and Sustainable Energy Reviews, 54, 452-472. https://doi.org/10.1016/j.rser.2015.10.031
  7. Blume, K., Röger, M., & Pitz-Paal, R. (2023). Full-scale investigation of heliostat aerodynamics through wind and pressure measurements at a pentagonal heliostat. Solar Energy, 251, 337-349. https://doi.org/10.1016/j.solener.2022.12.016
  8. Blume, K., Röger, M., & Pitz-Paal, R. (2023). Simplified analytical model to describe wind loads and wind-induced tracking deviations of heliostats. Solar Energy, 256, 96-109. https://doi.org/10.1016/j.solener.2023.03.055
  9. Coventry, J., & Pye, J. (2014). Heliostat Cost Reduction – Where to Now? Energy Procedia, 49, 60-70. https://doi.org/10.1016/j.egypro.2014.03.007
  10. Devabhaktuni, V., Alam, M., Shekara Sreenadh Reddy Depuru, S., Green, R. C., Nims, D., & Near, C. (2013). Solar energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 19, 555-564. https://doi.org/10.1016/j.rser.2012.11.024
  11. Dorian, J. P., Franssen, H. T., & Simbeck, D. R. (2006). Global challenges in energy. Energy Policy, 34(15), 1984-1991. https://doi.org/10.1016/j.enpol.2005.03.010
  12. Emes, M. J., Arjomandi, M., & Nathan, G. J. (2015). Effect of heliostat design wind speed on the levelised cost of electricity from concentrating solar thermal power tower plants. Solar Energy, 115, 441-451. https://doi.org/10.1016/j.solener.2015.02.047
  13. Emes, M. J., Jafari, A., Coventry, J., & Arjomandi, M. (2020). The influence of atmospheric boundary layer turbulence on the design wind loads and cost of heliostats. Solar Energy, 207, 796-812. https://doi.org/10.1016/j.solener.2020.07.022
  14. Emes, M. J., Marano, M., & Arjomandi, M. (2024). Heliostat wind loads in the atmospheric boundary layer (ABL): Reconciling field measurements with wind tunnel experiments. Solar Energy, 277, 112742. https://doi.org/10.1016/j.solener.2024.112742
  15. Emes, M., Jafari, A., Pfahl, A., Coventry, J., & Arjomandi, M. (2021). A review of static and dynamic heliostat wind loads. Solar Energy, 225, 60-82. https://doi.org/10.1016/j.solener.2021.07.014
  16. Emes, M., Yellapantula, S., Sment, J., Armijo, K., Muller, M., Mehos, M., ... & Arjomandi, M. (2024). Heliostat Consortium: Gap Analysis on State of the Art in Wind Load Design. Journal of Solar Energy Engineering, 146(6), 061001. https://doi.org/10.1115/1.4065429
  17. Fadlallah, S. O., Anderson, T. N., & Nates, R. J. (2021). Flow behaviour and aerodynamic loading on a stand-alone heliostat: Wind incidence effect. Arabian Journal for Science and Engineering, 46, 7303-7321. https://doi.org/10.1007/s13369-021-05405-0
  18. Forman, P., Schellen, M., Schlichting, T., Pfahl, A., Mark, P., Glock, C., & Schnell, J. (2025). Design, construction, and qualification of a lightweight, modular heliostat made from high-performance concrete. Solar Energy, 285, 113093. https://doi.org/10.1016/j.solener.2024.113093
  19. Fuqiang, W., Ziming, C., Jianyu, T., Yuan, Y., Yong, S., & Linhua, L. (2017). Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 1314-1328. https://doi.org/10.1016/j.rser.2017.05.174
  20. Grigoriev, V., Milidonis, K., Corsi, C., & Blanco, M. (2022). Heliostat fields with a balanced mirror density. Solar Energy, 243, 336-347. https://doi.org/10.1016/j.solener.2022.07.050
  21. Hamidi, M. S. (2024). Direct numerical simulations of flow in dense fluid-particle systems (Doctoral dissertation, Université de Perpignan)
  22. Hinkley, J. T., Hayward, J. A., Curtin, B., Wonhas, A., Boyd, R., Grima, C., Tadros, A., Hall, R., & Naicker, K. (2013). An analysis of the costs and opportunities for concentrating solar power in Australia. Renewable Energy, 57, 653-661. https://doi.org/10.1016/j.renene.2013.02.020
  23. Jafari, A. (2020). Effects of Turbulence on Heliostat Wind Loads (Doctoral dissertation). https://hdl.handle.net/2440/135328
  24. Ji, B., Qiu, P., Xu, F., Liu, Q., Zhang, X., & Zhang, L. (2023). Concentrating efficiency loss of heliostat with multiple sub-mirrors under wind loads. Energy, 281, 128281. https://doi.org/10.1016/j.energy.2023.128281
  25. Jones, S., Lumia, R., Davenport, R., Thomas, R., Gorman, D., Kolb, G., & Donnelly, M. (2007). Heliostat Cost Reduction Study. Sandia Natl Lab. https://doi.org/10.2172/912923
  26. Kandpal, T. C., & Broman, L. (2014). Renewable energy education: A global status review. Renewable and Sustainable Energy Reviews, 34, 300-324. https://doi.org/10.1016/j.rser.2014.02.039
  27. Kjärstad, J., & Johnsson, F. (2009). Resources and future supply of oil. Energy Policy, 37(2), 441-464. https://doi.org/10.1016/j.enpol.2008.09.056
  28. Li, W., Yang, F., Niu, H., Patruno, L., & Hua, X. (2024). Wind loads on heliostat tracker: A LES study on the role of geometrical details and the characteristics of near-ground turbulence. Solar Energy, 284, 113041. https://doi.org/10.1016/j.solener.2024.113041
  29. Mahfoud, O., Moummi, A., Kadja, M., Noureddine, M., & Mebrouk, R. (2013). Dynamic and thermal study of air flow control by chicanes with inclined upper parts in solar air collectors. International Journal of Sustainable Energy, 34. https://doi.org/10.1080/14786451.2013.821125
  30. Mahfoud, O., Danane, F., Debbache, M., Karoua, H., Takilalte, A., & Bouaichaoui, S. (2022, July). Wind action effects on heliostat–CFD and FEM study. IOP Conference Series: Earth and Environmental Science, 1048(1), 012007. IOP Publishing. https://doi: 10.1088/1755-1315/1048/1/012007
  31. Marano, M., Emes, M. J., Jafari, A., & Arjomandi, M. (2024). Effect of facet gap on heliostat wind loading. Solar Energy, 271, 112428. https://doi.org/10.1016/j.solener.2024.112428
  32. Martín, P., Elena, V. B., Loredo-Souza, A. M., & Camaño, E. B. (2016). Experimental study of the effects of dish antennas on the wind loading of telecommunication towers. Journal of Wind Engineering and Industrial Aerodynamics, 149, 40-47. https://doi.org/10.1016/j.jweia.2015.11.010
  33. Merarda, H., Aksas, M., & Andrianne, T. (2020). Shape effects on aerodynamic loading of heliostats. Mechanics & Industry, 21(6), 614. https://doi.org/10.1051/meca/2020086
  34. Merarda, H., Toumi, M., & Boutelhig, A. (2024). Analysis of heliostat fatigue: Impact of wind speed distribution, studied over six regions of Algeria. Solar Energy, 278, 112776. https://doi.org/10.1016/j.solener.2024.112776
  35. Mughal, K. H., Bugvi, S. A., Jamil, M. F., Baig, B. T., Ahmad, T., Irfan, M., ... & Gondal, A. A. (2022). Enhancement of Aerodynamic Performance of High Speed Train Through Nose Profile Design: A Computational Fluid Dynamics Approach. Jurnal Kejuruteraan, 34(6), 1237-1250. http://journalarticle.ukm.my/21128/
  36. Natraj, Rao, B. N., & Reddy, K. S. (2021). Wind load and structural analysis for standalone solar parabolic trough collector. Renewable Energy, 173, 688-703. https://doi.org/10.1016/j.renene.2021.04.007
  37. Pavlović, T. M., Radonjić, I. S., Milosavljević, D. D., & Pantić, L. S. (2012). A review of concentrating solar power plants in the world and their potential use in Serbia. Renewable and Sustainable Energy Reviews, 16(6), 3891-3902. https://doi.org/10.1016/j.rser.2012.03.042
  38. Peterka, J. A., & Derickson, R. G. (1992). Wind load design methods for ground-based heliostats and parabolic dish collectors. https://www.osti.gov/servlets/purl/7105290
  39. Peterka, J., Tan, Z., Cermak, J., & Bienkiewicz, B. (1989). Mean and peak wind loads on heliostats. J. Sol. Energy Eng. 111(2), 158-164. https://doi.org/10.1115/1.3268302
  40. Pfahl, A., Buselmeier, M., & Zaschke, M. (2011). Wind loads on heliostats and photovoltaic trackers of various aspect ratios. Solar Energy, 85(9), 2185-2201. https://doi.org/10.1016/j.solener.2011.06.006
  41. Shademan, M., Barron, R., Balachandar, R., & Hangan, H. (2014). Numerical simulation of wind loading on ground-mounted solar panels at different flow configuration. Canadian Journal of Civil Engineering. https://doi.org/10.1139/cjce-2013-0537
  42. Sosa-Flores, P., Hinojosa, J. F., & Duran, R. L. (2022). Computational fluid dynamics study of the rear geometry influence on aerodynamic load coefficients of heliostats in stow position. Solar Energy, 241, 130-156. https://doi.org/10.1016/j.solener.2022.06.004
  43. Sun, H., Gong, B., & Yao, Q. (2014). A review of wind loads on heliostats and trough collectors. Renewable and Sustainable Energy Reviews, 32, 206-221. https://doi.org/10.1016/j.rser.2014.01.032
  44. TR, A., Kalpathy, S. K., & Thomas, T. (2025). Design and Assessment of a Linear Drive‐Controlled Tilt‐Roll Heliostat with Sun Tracking Algorithm for Small‐Scale Solar Installation. Energy Technology, 13(3), 2401051. https://doi.org/10.1002/ente.202401051
  45. Waqas, M., & Ahmad, N. (2020). Computation of Stress Distribution in Hydraulic Horizontal Propeller Turbine Runner Based on Fluid–Structure Interaction Analysis. Arabian Journal for Science and Engineering, 45(11), 9325-9337. https://doi.org/10.1007/s13369-020-04727-9
  46. Yang, M., Zhang, Y., Wang, Q., Zhu, Y., & Taylor, R. A. (2022). A coupled structural-optical analysis of a novel umbrella heliostat. Solar Energy, 231, 880-888. https://doi.org/10.1016/j.solener.2021.12.018
  47. Yu, J. S., Emes, M. J., Ghanadi, F., Arjomandi, M., & Kelso, R. (2019). Experimental investigation of peak wind loads on tandem operating heliostats within an atmospheric boundary layer. Solar Energy, 183, 248-259. https://doi.org/10.1016/j.solener.2019.03.002
  48. Zang, C., Gong, B., & Wang, Z. (2014). Experimental and theoretical study of wind loads and mechanical performance analysis of heliostats. Solar Energy, 105, 48–57. https://doi.org/10.1016/j.solener.2014.04.003

Last update:

No citation recorded.

Last update: 2025-10-06 16:28:48

No citation recorded.