skip to main content

Optimization of Biodiesel Production from Candlenut Oil via Simultaneous Reaction Using a Bifunctional CeO2.CaO Catalyst

Department of Chemical Engineering, Diponegoro University, Jl. Prof. Soedarto, Kampus Undip Tembalang, Semarang 50275, Indonesia

Received: 23 Jan 2025; Published: 20 Oct 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The biodiesel synthesis process with a high free fatty acid content can be accomplished in a single stage using solid catalysts that function simultaneously as both base and acid catalysts. In this study, CeO₂.CaO was used as a bifunctional catalyst for biodiesel synthesis from candlenut seed oil. Catalyst characterization includes FTIR, BET, SEM-EDX, and TPD analysis. Process optimization was carried out using the central composite design method on Design Expert software. To determine the effect of each process variable on the simultaneous reaction, the effect of methanol-to-oil molar ratio, catalyst loading, and reaction temperature on FAME yield was also analyzed. The optimum operating conditions to achieve high FAME yield were found at methanol-to-oil molar ratio of 10.3:1, 5.39% w/w catalyst loading, and a reaction temperature of 60°C.

Note: This article has supplementary file(s).

Fulltext |  Research Instrument
Untitled
Subject
Type Research Instrument
  Download (3MB)    Indexing metadata
Keywords: Bifunctional catalyst; biodiesel; optimization; candlenut oil; catalyst characteristics

Article Metrics:

  1. Al-Muhtaseb, A. H., Osman, A. I., Murphin Kumar, P. S., Jamil, F., Al-Haj, L., Al Nabhani, A., Kyaw, H. H., Myint, M. T. Z., Mehta, N., & Rooney, D. W. (2021). Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study. Energy Conversion and Management, 236. https://doi.org/10.1016/j.enconman.2021.114040
  2. Al-Saadi, A., Mathan, B., & He, Y. (2020). Biodiesel production via simultaneous transesterification and esterification reactions over SrO–ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil. Chemical Engineering Research and Design, 162, 238–248. https://doi.org/10.1016/j.cherd.2020.08.018
  3. Alsultan, A. G., Asikin Mijan, N., Mansir, N., Razali, S. Z., Yunus, R., & Taufiq-Yap, Y. H. (2021). Combustion and Emission Performance of CO/NO x /SO x for Green Diesel Blends in a Swirl Burner. ACS Omega, 6(1), 408–415. https://doi.org/10.1021/acsomega.0c04800
  4. Basumatary, S. F., Brahma, S., Hoque, M., Das, B. K., Selvaraj, M., Brahma, S., & Basumatary, S. (2023). Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy and Resources, 1(3), 100032. https://doi.org/10.1016/j.gerr.2023.100032
  5. Buchori, L., Widayat, W., Muraza, O., Amali, M. I., Maulida, R. W., & Prameswari, J. (2020). Effect of Temperature and Concentration of Zeolite Catalysts from Geothermal Solid Waste in Biodiesel Production from Used Cooking Oil by Esterification–Transesterification Process. Processes, 8(12), 1629. https://doi.org/10.3390/pr8121629
  6. Cahyono, B., Muhammad Fathallah, A. Z., & Pujinaufal, V. I. (2018). Effect of Model from Candlenut Seed (Aleurites moluccana) to NOx Emission and Combustion Process on Single Cylinder Diesel Engine. International Journal of Marine Engineering Innovation and Research, 3(2). https://doi.org/10.12962/j25481479.v2i4.4170
  7. Devi, A., & Khatkar, B. S. (2016). Physicochemical, rheological and functional properties of fats and oils in relation to cookie quality: a review. Journal of Food Science and Technology, 53(10), 3633–3641. https://doi.org/10.1007/s13197-016-2355-0
  8. Elgharbawy, A. S., Sadik, W. A., Sadek, O. M., & Kasaby, M. A. (2021). A review on biodiesel feedstocks and production technologies. Journal of the Chilean Chemical Society, 65(1), 5098–5109. https://doi.org/10.4067/S0717-97072021000105098
  9. Faruque, M. O., Razzak, S. A., & Hossain, M. M. (2020). Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil—A Review. Catalysts, 10(9), 1025. https://doi.org/10.3390/catal10091025
  10. Ferreira, A. G. M., Carmen Talvera-Prieto, N. M., Portugal, A. A., & Moreira, R. J. (2021). REVIEW: Models for predicting viscosities of biodiesel fuels over extended ranges of temperature and pressure. Fuel, 287, 119544. https://doi.org/10.1016/j.fuel.2020.119544
  11. Gebremariam, S. N., & Marchetti, J. M. (2018). Techno-economic feasibility of producing biodiesel from acidic oil using sulfuric acid and calcium oxide as catalysts. Energy Conversion and Management, 171, 1712–1720. https://doi.org/10.1016/j.enconman.2018.06.105
  12. Gil, A. (2023). Classical and new insights into the methodology for characterizing adsorbents and metal catalysts by chemical adsorption. Catalysis Today, 423, 114016. https://doi.org/10.1016/j.cattod.2023.01.023
  13. Gülüm, M., & Bilgin, A. (2017). Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density. Fuel, 199, 567–577. https://doi.org/10.1016/j.fuel.2017.03.001
  14. Gurunathan, B., & Ravi, A. (2015). Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresource Technology, 190, 424–428. https://doi.org/10.1016/j.biortech.2015.04.101
  15. Hartono, Z. A., & Cahyono, B. (2020). Effect of Biodiesel B30 on Deposit Forming and Wear Metal of Diesel Engine Components. International Journal of Marine Engineering Innovation and Research, 5(1). https://doi.org/10.12962/j25481479.v4i4.5587
  16. Hussain, F., Alshahrani, S., Abbas, M. M., Khan, H. M., Jamil, A., Yaqoob, H., Soudagar, M. E. M., Imran, M., Ahmad, M., & Munir, M. (2021). Review waste animal bones as catalysts for biodiesel production; a mini review. Catalysts, 11(5). https://doi.org/10.3390/catal11050630
  17. Juwono, H., Zakiyah, A., Subagyo, R., & Kusumawati, Y. (2023). Facile Production of Biodiesel from Candlenut Oil (Aleurites moluccana L.) Using Photocatalytic Method by Nano Sized-ZnO Photocatalytic Agent Synthesized via Polyol Method. Indonesian Journal of Chemistry, 23(5), 1304. https://doi.org/10.22146/ijc.82895
  18. Karmakar, R., Kundu, K., & Rajor, A. (2018). Fuel properties and emission characteristics of biodiesel produced from unused algae grown in India. Petroleum Science, 15(2), 385–395. https://doi.org/10.1007/s12182-017-0209-7
  19. Kesserwan, F., Ahmad, M. N., Khalil, M., & El-Rassy, H. (2020). Hybrid CaO/Al2O3 aerogel as heterogeneous catalyst for biodiesel production. Chemical Engineering Journal, 385, 123834. https://doi.org/10.1016/j.cej.2019.123834
  20. Kingkam, W., Maisomboon, J., Khamenkit, K., Nuchdang, S., Nilgumhang, K., Issarapanacheewin, S., & Rattanaphra, D. (2024). Preparation of CaO@CeO2 Solid Base Catalysts Used for Biodiesel Production. Catalysts, 14(4), 240. https://doi.org/10.3390/catal14040240
  21. Lani, N. S., Ngadi, N., Inuwa, I. M., Opotu, L. A., Zakaria, Z. Y., & Widayat, W. (2022). Influence of desilication route of ZSM-5 zeolite in mesoporous zeolite supported calcium oxide catalyst for biodiesel production. Microporous and Mesoporous Materials, 343, 112153. https://doi.org/10.1016/j.micromeso.2022.112153
  22. Li, H., Wang, Y., Ma, X., Guo, M., Li, Y., Li, G., Cui, P., Zhou, S., & Yu, M. (2022). Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production. Renewable Energy, 185, 970–977. https://doi.org/10.1016/j.renene.2021.12.096
  23. Li, X., Liu, J., Chen, G., Zhang, J., Wang, C., & Liu, B. (2019). Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: A critical review. Algal Research, 43, 101619. https://doi.org/10.1016/j.algal.2019.101619
  24. Maneerung, T., Kawi, S., Dai, Y., & Wang, C.-H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, 123, 487–497. https://doi.org/10.1016/j.enconman.2016.06.071
  25. Manríquez-Ramírez, M., Gómez, R., Hernández-Cortez, J. G., Zúñiga-Moreno, A., Reza-San Germán, C. M., & Flores-Valle, S. O. (2013). Advances in the transesterification of triglycerides to biodiesel using MgO–NaOH, MgO–KOH and MgO–CeO2 as solid basic catalysts. Catalysis Today, 212, 23–30. https://doi.org/10.1016/j.cattod.2012.11.005
  26. Martins, F., Felgueiras, C., & Smitková, M. (2018). Fossil fuel energy consumption in European countries. Energy Procedia, 153, 107–111. https://doi.org/10.1016/j.egypro.2018.10.050
  27. Mekonnen, K. D., & Yesuf, A. Y. (2024). OH-Impregnated Household Bleach-Making Sediments for the Catalysis of Waste Cooking Oil Transesterification: Parameter Optimization. ACS Omega, 9(4), 4613–4626. https://doi.org/10.1021/acsomega.3c07810
  28. Mishra, V. K., & Goswami, R. (2018). A review of production, properties and advantages of biodiesel. Biofuels, 9(2), 273–289. https://doi.org/10.1080/17597269.2017.1336350
  29. Mulyatun, M., Istadi, I., & Widayat, W. (2023). Synthesis and Characterization of Physically Mixed V2O5.CaO as Bifunctional Catalyst for Methyl Ester Production from Waste Cooking Oil. International Journal of Renewable Energy Development, 12(2), 381–389. https://doi.org/10.14710/ijred.2023.51047
  30. Mulyatun, M., Prameswari, J., Istadi, I., & Widayat, W. (2022). Production of non-food feedstock based biodiesel using acid-base bifunctional heterogeneous catalysts: A review. Fuel, 314, 122749. https://doi.org/10.1016/j.fuel.2021.122749
  31. Mulyatun, M., Prameswari, J., Istadi, I., & Widayat, W. (2024). Synthesis Method Effect on the Catalytic Performance of Acid–Base Bifunctional Catalysts for Converting Low-Quality Waste Cooking Oil to Biodiesel. Catalysis Letters, 154(8), 4837–4855. https://doi.org/10.1007/s10562-024-04643-9
  32. Munfarida, S., Widayat, Satriadi, H., Cahyono, B., Hadiyanto, Philia, J., & Prameswari, J. (2020). Geothermal industry waste-derived catalyst for enhanced biohydrogen production. Chemosphere, 258, 127274. https://doi.org/10.1016/j.chemosphere.2020.127274
  33. N. Njoku, C., & K. Otisi, S. (2023). Application of Central Composite Design with Design Expert v13 in Process Optimization. In Response Surface Methodology - Research Advances and Applications. IntechOpen. https://doi.org/10.5772/intechopen.109704
  34. Nayebzadeh, H., & Hojjat, M. (2020). Fabrication of SO42−/MO–Al2O3–ZrO2 (M = Ca, Mg, Sr, Ba) as Solid Acid–Base Nanocatalyst Used in Trans/Esterification Reaction. Waste and Biomass Valorization, 11(5), 2027–2037. https://doi.org/10.1007/s12649-018-0526-0
  35. Oni, B. A., Sanni, S. E., Ezurike, B. O., & Okoro, E. E. (2022). Effect of corrosion rates of preheated Schinzochytrium sp. microalgae biodiesel on metallic components of a diesel engine. Alexandria Engineering Journal, 61(10), 7509–7528. https://doi.org/10.1016/j.aej.2022.01.005
  36. Ozcanli, M., Gungor, C., & Aydin, K. (2013). Biodiesel Fuel Specifications: A Review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(7), 635–647. https://doi.org/10.1080/15567036.2010.503229
  37. Pham, L. N., Van Luu, B., Phuoc, H. D., Le, H. N. T., Truong, H. T., Duc Luu, P., Furuta, M., Imamura, K., & Maeda, Y. (2018). Production of biodiesel from candlenut oil using a two-step co-solvent method and evaluation of its gaseous emissions. Journal of Oleo Science, 67(5), 617–626. https://doi.org/10.5650/jos.ess17220
  38. Prabaharan, D. M. D. M., Sadaiyandi, K., Mahendran, M., & Sagadevan, S. (2016). Structural, Optical, Morphological and Dielectric Properties of Cerium Oxide Nanoparticles. Materials Research, 19(2), 478–482. https://doi.org/10.1590/1980-5373-MR-2015-0698
  39. Prameswari, J., Widayat, W., Buchori, L., & Hadiyanto, H. (2022). Novel iron sand-derived α-Fe2O3/CaO2 bifunctional catalyst for waste cooking oil-based biodiesel production. Environmental Science and Pollution Research, 30(44), 98832–98847. https://doi.org/10.1007/s11356-022-21942-z
  40. Qian, M., Zhao, Y., Huo, E., Wang, C., Zhang, X., Lin, X., Wang, L., Kong, X., Ruan, R., & Lei, H. (2022). Improving catalytic production of aromatic hydrocarbons with a mesoporous ZSM-5 modified with nanocellulose as a green template. Journal of Analytical and Applied Pyrolysis, 166, 105624. https://doi.org/10.1016/j.jaap.2022.105624
  41. Razak, S., Zainal, F. F., & Shamsudin, S. R. (2020). Effect of Porosity and Water Absorption on Compressive Strength of Fly Ash based Geopolymer and OPC Paste. IOP Conference Series: Materials Science and Engineering, 957(1), 012035. https://doi.org/10.1088/1757-899X/957/1/012035
  42. Rouhany, M., & Montgomery, H. (2019). Global Biodiesel Production: The State of the Art and Impact on Climate Change (pp. 1–14). https://doi.org/10.1007/978-3-030-00985-4_1
  43. Shaah, M. A., Hossain, M. S., Allafi, F., Ab Kadir, M. O., & Ahmad, M. I. (2022). Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: optimization, kinetics, and thermodynamic studies. RSC Advances, 12(16), 9845–9861. https://doi.org/10.1039/d2ra00571a
  44. Siregar, E., Simatupang, L., Sembiring, J. H., & Ginting, E. (2024). Production of Biodiesel from Candlenut Seed Oil (Aleurites Moluccana Wild) Using a NaOH/CaO/Ca Catalyst with Microwave Heating. Jurnal Kimia Sains Dan Aplikasi, 27(1), 21–27. https://doi.org/10.14710/jksa.27.1.21-27
  45. Susilowati, E., Hasan, A., & Syarif, A. (2019). Free Fatty Acid Reduction in a Waste Cooking Oil as a Raw Material for Biodiesel with Activated Coal Ash Adsorbent. Journal of Physics: Conference Series, 1167, 012035. https://doi.org/10.1088/1742-6596/1167/1/012035
  46. Syazwani, O. N., Rashid, U., Mastuli, M. S., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata). Renewable Energy, 131, 187–196. https://doi.org/10.1016/j.renene.2018.07.031
  47. Tomić, M., Đurišić-Mladenović, N., Mićić, R., Simikić, M., & Savin, L. (2019). Effects of accelerated oxidation on the selected fuel properties and composition of biodiesel. Fuel, 235, 269–276. https://doi.org/10.1016/j.fuel.2018.07.123
  48. Vilas Bôas, R. N., & Mendes, M. F. (2022). A REVIEW OF BIODIESEL PRODUCTION FROM NON-EDIBLE RAW MATERIALS USING THE TRANSESTERIFICATION PROCESS WITH A FOCUS ON INFLUENCE OF FEEDSTOCK COMPOSITION AND FREE FATTY ACIDS. Journal of the Chilean Chemical Society, 67(1), 5433–5444. https://doi.org/10.4067/S0717-97072022000105433
  49. Wong, Y. C., Tan, Y. P., Taufiq-Yap, Y. H., Ramli, I., & Tee, H. S. (2015). Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel, 162, 288–293. https://doi.org/10.1016/j.fuel.2015.09.012
  50. Wu, G., Ge, J. C., & Choi, N. J. (2020). A Comprehensive Review of the Application Characteristics of Biodiesel Blends in Diesel Engines. Applied Sciences, 10(22), 8015. https://doi.org/10.3390/app10228015
  51. Yildiz, I., Caliskan, H., & Mori, K. (2022). Assessment of biofuels from waste cooking oils for diesel engines in terms of waste-to-energy perspectives. Sustainable Energy Technologies and Assessments, 50, 101839. https://doi.org/10.1016/j.seta.2021.101839
  52. Zhang, N., Xue, H., & Hu, R. (2018). The activity and stability of CeO2@CaO catalysts for the production of biodiesel. RSC Advances, 8(57), 32922–32929. https://doi.org/10.1039/c8ra06884d
  53. Zheng, Y. C., Yu, X. H., & Yang, J. (2017). Synthesis of CaO-CeO2 catalysts by soft template method for biodiesel production. IOP Conference Series: Earth and Environmental Science, 69(1). https://doi.org/10.1088/1755-1315/69/1/012048

Last update:

No citation recorded.

Last update: 2025-10-20 21:38:40

No citation recorded.