skip to main content

Optimization of biodiesel production from candlenut oil via simultaneous reaction using a bifunctional CeO2.CaO catalyst

1Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia

2Engineer Professional Program Study Program, Faculty of Engineering, Diponegoro University, Indonesia

3Advanced Materials Laboratory, Center Laboratory for Research and Service Unit, Diponegoro University, Indonesia

Received: 31 Jan 2024; Revised: 16 Aug 2024; Accepted: 7 Oct 2024; Available online: 24 Oct 2024; Published: 1 Nov 2025.
Editor(s): Rupam Kataki
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The biodiesel synthesis process with a high FFA content can be accomplished in a single stage using solid catalysts that function simultaneously as base and acid catalysts. In this study, CeO₂.CaO was used as a bifunctional catalyst for biodiesel synthesis from candlenut seed oil. CeO2.CaO catalyst with a weight ratio of CeO2 : CaO (1:4) was synthesized through a physical mixing process. The effects of the methanol-to-oil molar ratio, catalyst loading, and reaction temperature on the resulting biodiesel yield were investigated. Biodiesel was synthesized in a three-necked flask with a mole ratio of methanol to oil (8:1, 10:1, 12:1). CeO2.CaO catalyst was added with a concentration of 2% w/w, 4% w/w, and 6% w/w to the weight of candlenut oil. Heating was carried out at 50ºC, 60ºC, and 70ºC with stirring using a magnetic stirrer at 200 rpm for 1 hour. The FTIR analysis shows peaks corresponding to the O-Ca-O and O-Ce-O groups, indicating the formation of the CeO₂.CaO catalyst. BET analysis provides data on the catalyst's surface area (9.536 m²/g), pore diameter (5.876 nm), and pore volume (0.028 cm³/g). SEM-EDX analysis reveals that the catalyst has a mesoporous structure, which is beneficial for transesterification reactions. TPD analysis indicates that the bifunctional CeO₂.CaO catalyst possesses strong acidic and basic properties. The optimum operating conditions to achieve a high FAME yield were a methanol-to-oil molar ratio of 10.3:1, 5.39% w/w catalyst loading, and a reaction temperature of 60°C. Based on the catalyst reusability assessment, the CeO₂.CaO bifunctional catalyst demonstrated favorable stability, retaining catalytic performance over multiple cycles. After four consecutive reaction cycles, the catalyst maintained an overall biodiesel yield exceeding 75%, indicating its potential for repeated use in transesterification processes
Fulltext View|Download
Keywords: Bifunctional catalyst; biodiesel; optimization; candlenut oil; catalyst characteristics

Article Metrics:

  1. Al-Muhtaseb, A. H., Osman, A. I., Murphin Kumar, P. S., Jamil, F., Al-Haj, L., Al Nabhani, A., Kyaw, H. H., Myint, M. T. Z., Mehta, N., & Rooney, D. W. (2021). Circular economy approach of enhanced bifunctional catalytic system of CaO/CeO2 for biodiesel production from waste loquat seed oil with life cycle assessment study. Energy Conversion and Management, 236. https://doi.org/10.1016/j.enconman.2021.114040
  2. Al-Saadi, A., Mathan, B., & He, Y. (2020). Biodiesel production via simultaneous transesterification and esterification reactions over SrO–ZnO/Al2O3 as a bifunctional catalyst using high acidic waste cooking oil. Chemical Engineering Research and Design, 162, 238–248. https://doi.org/10.1016/j.cherd.2020.08.018
  3. Ali, C. H., Asif, A. H., Iqbal, T., Qureshi, A. S., Kazmi, M. A., Yasin, S., Danish, M., & Mu, B.-Z. (2018). Improved transesterification of waste cooking oil into biodiesel using calcined goat bone as a catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(9), 1076–1083. https://doi.org/10.1080/15567036.2018.1469691
  4. Alsultan, A. G., Asikin Mijan, N., Mansir, N., Razali, S. Z., Yunus, R., & Taufiq-Yap, Y. H. (2021). Combustion and Emission Performance of CO/NO x /SO x for Green Diesel Blends in a Swirl Burner. ACS Omega, 6(1), 408–415. https://doi.org/10.1021/acsomega.0c04800
  5. Basumatary, S. F., Brahma, S., Hoque, M., Das, B. K., Selvaraj, M., Brahma, S., & Basumatary, S. (2023). Advances in CaO-based catalysts for sustainable biodiesel synthesis. Green Energy and Resources, 1(3), 100032. https://doi.org/10.1016/j.gerr.2023.100032
  6. Buchori, L., Widayat, W., Muraza, O., Amali, M. I., Maulida, R. W., & Prameswari, J. (2020). Effect of Temperature and Concentration of Zeolite Catalysts from Geothermal Solid Waste in Biodiesel Production from Used Cooking Oil by Esterification–Transesterification Process. Processes, 8(12), 1629. https://doi.org/10.3390/pr8121629
  7. Cahyono, B., Muhammad Fathallah, A. Z., & Pujinaufal, V. I. (2018). Effect of Model from Candlenut Seed (Aleurites moluccana) to NOx Emission and Combustion Process on Single Cylinder Diesel Engine. International Journal of Marine Engineering Innovation and Research, 3(2). https://doi.org/10.12962/j25481479.v2i4.4170
  8. Devi, A., & Khatkar, B. S. (2016). Physicochemical, rheological and functional properties of fats and oils in relation to cookie quality: a review. Journal of Food Science and Technology, 53(10), 3633–3641. https://doi.org/10.1007/s13197-016-2355-0
  9. ELGHARBAWY, A. S., SADIK, W. A., SADEK, O. M., & KASABY, M. A. (2021). A review on biodiesel feedstocks and production technologies. Journal of the Chilean Chemical Society, 65(1), 5098–5109. https://doi.org/10.4067/S0717-97072021000105098
  10. Faruque, M. O., Razzak, S. A., & Hossain, M. M. (2020). Application of Heterogeneous Catalysts for Biodiesel Production from Microalgal Oil—A Review. Catalysts, 10(9), 1025. https://doi.org/10.3390/catal10091025
  11. Ferreira, A. G. M., Carmen Talvera-Prieto, N. M., Portugal, A. A., & Moreira, R. J. (2021). REVIEW: Models for predicting viscosities of biodiesel fuels over extended ranges of temperature and pressure. Fuel, 287, 119544. https://doi.org/10.1016/j.fuel.2020.119544
  12. Gebremariam, S. N., & Marchetti, J. M. (2018). Techno-economic feasibility of producing biodiesel from acidic oil using sulfuric acid and calcium oxide as catalysts. Energy Conversion and Management, 171, 1712–1720. https://doi.org/10.1016/j.enconman.2018.06.105
  13. Gil, A. (2023). Classical and new insights into the methodology for characterizing adsorbents and metal catalysts by chemical adsorption. Catalysis Today, 423, 114016. https://doi.org/10.1016/j.cattod.2023.01.023
  14. Gülüm, M., & Bilgin, A. (2017). Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density. Fuel, 199, 567–577. https://doi.org/10.1016/j.fuel.2017.03.001
  15. Gurunathan, B., & Ravi, A. (2015). Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresource Technology, 190, 424–428. https://doi.org/10.1016/j.biortech.2015.04.101
  16. Hadiyanto, H., Aini, A. P., Widayat, W., Kusmiyati, K., Budiman, A., & Roesyadi, A. (2020). Multi-Feedstocks Biodiesel Production from Esterification of Calophyllum inophyllum Oil, Castor Oil, Palm Oil and Waste Cooking Oil. International Journal of Renewable Energy Development, 9(1), 119-123. https://doi.org/10.14710/ijred.9.1.119-123
  17. Hartono, Z. A., & Cahyono, B. (2020). Effect of Biodiesel B30 on Deposit Forming and Wear Metal of Diesel Engine Components. International Journal of Marine Engineering Innovation and Research, 5(1). https://doi.org/10.12962/j25481479.v4i4.5587
  18. Hussain, F., Alshahrani, S., Abbas, M. M., Khan, H. M., Jamil, A., Yaqoob, H., Soudagar, M. E. M., Imran, M., Ahmad, M., & Munir, M. (2021). Review waste animal bones as catalysts for biodiesel production; a mini review. Catalysts, 11(5). https://doi.org/10.3390/catal11050630
  19. Juwono, H., Zakiyah, A., Subagyo, R., & Kusumawati, Y. (2023). Facile Production of Biodiesel from Candlenut Oil (Aleurites moluccana L.) Using Photocatalytic Method by Nano Sized-ZnO Photocatalytic Agent Synthesized via Polyol Method. Indonesian Journal of Chemistry, 23(5), 1304. https://doi.org/10.22146/ijc.82895
  20. Karmakar, R., Kundu, K., & Rajor, A. (2018). Fuel properties and emission characteristics of biodiesel produced from unused algae grown in India. Petroleum Science, 15(2), 385–395. https://doi.org/10.1007/s12182-017-0209-7
  21. Kesserwan, F., Ahmad, M. N., Khalil, M., & El-Rassy, H. (2020). Hybrid CaO/Al2O3 aerogel as heterogeneous catalyst for biodiesel production. Chemical Engineering Journal, 385, 123834. https://doi.org/10.1016/j.cej.2019.123834
  22. Kingkam, W., Maisomboon, J., Khamenkit, K., Nuchdang, S., Nilgumhang, K., Issarapanacheewin, S., & Rattanaphra, D. (2024). Preparation of CaO@CeO2 Solid Base Catalysts Used for Biodiesel Production. Catalysts, 14(4), 240. https://doi.org/10.3390/catal14040240
  23. Lani, N. S., Ngadi, N., Inuwa, I. M., Opotu, L. A., Zakaria, Z. Y., & Widayat, W. (2022). Influence of desilication route of ZSM-5 zeolite in mesoporous zeolite supported calcium oxide catalyst for biodiesel production. Microporous and Mesoporous Materials, 343, 112153. https://doi.org/10.1016/j.micromeso.2022.112153
  24. Li, H., Wang, Y., Ma, X., Guo, M., Li, Y., Li, G., Cui, P., Zhou, S., & Yu, M. (2022). Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production. Renewable Energy, 185, 970–977. https://doi.org/10.1016/j.renene.2021.12.096
  25. Li, X., Liu, J., Chen, G., Zhang, J., Wang, C., & Liu, B. (2019). Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: A critical review. Algal Research, 43, 101619. https://doi.org/10.1016/j.algal.2019.101619
  26. Maneerung, T., Kawi, S., Dai, Y., & Wang, C.-H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, 123, 487–497. https://doi.org/10.1016/j.enconman.2016.06.071
  27. Manríquez-Ramírez, M., Gómez, R., Hernández-Cortez, J. G., Zúñiga-Moreno, A., Reza-San Germán, C. M., & Flores-Valle, S. O. (2013). Advances in the transesterification of triglycerides to biodiesel using MgO–NaOH, MgO–KOH and MgO–CeO2 as solid basic catalysts. Catalysis Today, 212, 23–30. https://doi.org/10.1016/j.cattod.2012.11.005
  28. Martins, F., Felgueiras, C., & Smitková, M. (2018). Fossil fuel energy consumption in European countries. Energy Procedia, 153, 107–111. https://doi.org/10.1016/j.egypro.2018.10.050
  29. Mazaheri, H., Ong, H. C., Amini, Z., Masjuki, H. H., Mofijur, M., Su, C. H., Anjum Badruddin, I., & Khan, T. M. Y. (2021). An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective. Energies, 14(13), 3950. https://doi.org/10.3390/en14133950
  30. Mekonnen, K. D., & Yesuf, A. Y. (2024). OH-Impregnated Household Bleach-Making Sediments for the Catalysis of Waste Cooking Oil Transesterification: Parameter Optimization. ACS Omega, 9(4), 4613–4626. https://doi.org/10.1021/acsomega.3c07810
  31. Mishra, V. K., & Goswami, R. (2018). A review of production, properties and advantages of biodiesel. Biofuels, 9(2), 273–289. https://doi.org/10.1080/17597269.2017.1336350
  32. Mohd Johari, S. A., Ayoub, M., Lee, J. Z., Rashidi, N. A., & Shamsuddin, M. R. (2024). Utilization of dairy waste scum oil for microwave-assisted biodiesel production over KOH-waste eggshell based calcium oxide catalyst. International Journal of Renewable Energy Development, 13(2), 294-302. https://doi.org/10.61435/ijred.2024.59995
  33. Mulyatun, M., Istadi, I., & Widayat, W. (2023). Synthesis and Characterization of Physically Mixed V2O5.CaO as Bifunctional Catalyst for Methyl Ester Production from Waste Cooking Oil. International Journal of Renewable Energy Development, 12(2), 381–389. https://doi.org/10.14710/ijred.2023.51047
  34. Mulyatun, M., Prameswari, J., Istadi, I., & Widayat, W. (2022). Production of non-food feedstock based biodiesel using acid-base bifunctional heterogeneous catalysts: A review. Fuel, 314, 122749. https://doi.org/10.1016/j.fuel.2021.122749
  35. Mulyatun, M., Prameswari, J., Istadi, I., & Widayat, W. (2024). Synthesis Method Effect on the Catalytic Performance of Acid–Base Bifunctional Catalysts for Converting Low-Quality Waste Cooking Oil to Biodiesel. Catalysis Letters, 154(8), 4837–4855. https://doi.org/10.1007/s10562-024-04643-9
  36. Munfarida, S., Widayat, Satriadi, H., Cahyono, B., Hadiyanto, Philia, J., & Prameswari, J. (2020). Geothermal industry waste-derived catalyst for enhanced biohydrogen production. Chemosphere, 258, 127274. https://doi.org/10.1016/j.chemosphere.2020.127274
  37. N. Njoku, C., & K. Otisi, S. (2023). Application of Central Composite Design with Design Expert v13 in Process Optimization. In Response Surface Methodology - Research Advances and Applications. IntechOpen. https://doi.org/10.5772/intechopen.109704
  38. Nayebzadeh, H., & Hojjat, M. (2020). Fabrication of SO42−/MO–Al2O3–ZrO2 (M = Ca, Mg, Sr, Ba) as Solid Acid–Base Nanocatalyst Used in Trans/Esterification Reaction. Waste and Biomass Valorization, 11(5), 2027–2037. https://doi.org/10.1007/s12649-018-0526-0
  39. Nguyen, V. N., Sharma, P., Kumar, A., Pham, M. T., Le, H. C., Truong, T. H., & Cao, D. N. (2023). Optimization of biodiesel production from Nahar oil using Box-Behnken design, ANOVA and grey wolf optimizer. International Journal of Renewable Energy Development, 12(4), 711-719. https://doi.org/10.14710/ijred.2023.54941
  40. Oni, B. A., Sanni, S. E., Ezurike, B. O., & Okoro, E. E. (2022). Effect of corrosion rates of preheated Schinzochytrium sp. microalgae biodiesel on metallic components of a diesel engine. Alexandria Engineering Journal, 61(10), 7509–7528. https://doi.org/10.1016/j.aej.2022.01.005
  41. Ozcanli, M., Gungor, C., & Aydin, K. (2013). Biodiesel Fuel Specifications: A Review. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(7), 635–647. https://doi.org/10.1080/15567036.2010.503229
  42. Pham, L. N., Van Luu, B., Phuoc, H. D., Le, H. N. T., Truong, H. T., Duc Luu, P., Furuta, M., Imamura, K., & Maeda, Y. (2018). Production of biodiesel from candlenut oil using a two-step co-solvent method and evaluation of its gaseous emissions. Journal of Oleo Science, 67(5), 617–626. https://doi.org/10.5650/jos.ess17220
  43. Popovicheva, O. B., Irimiea, C., Carpentier, Y., Ortega, I. K., Kireeva, E. D., Shonija, N. K., Schwarz, J., Vojtíšek-Lom, M., & Focsa, C. (2017). Chemical Composition of Diesel/Biodiesel Particulate Exhaust by FTIR Spectroscopy and Mass Spectrometry: Impact of Fuel and Driving Cycle. Aerosol and Air Quality Research, 17(7), 1717–1734. https://doi.org/10.4209/aaqr.2017.04.0127
  44. Prabaharan, D. M. D. M., Sadaiyandi, K., Mahendran, M., & Sagadevan, S. (2016). Structural, Optical, Morphological and Dielectric Properties of Cerium Oxide Nanoparticles. Materials Research, 19(2), 478–482. https://doi.org/10.1590/1980-5373-MR-2015-0698
  45. Prameswari, J., Widayat, W., Buchori, L., & Hadiyanto, H. (2023). Novel iron sand-derived α-Fe2O3/CaO2 bifunctional catalyst for waste cooking oil-based biodiesel production. Environmental Science and Pollution Research, 30(44), 98832–98847. https://doi.org/10.1007/s11356-022-21942-z
  46. Qian, M., Zhao, Y., Huo, E., Wang, C., Zhang, X., Lin, X., Wang, L., Kong, X., Ruan, R., & Lei, H. (2022). Improving catalytic production of aromatic hydrocarbons with a mesoporous ZSM-5 modified with nanocellulose as a green template. Journal of Analytical and Applied Pyrolysis, 166, 105624. https://doi.org/10.1016/j.jaap.2022.105624
  47. Rosset, M., & Perez-Lopez, O. W. (2019). FTIR spectroscopy analysis for monitoring biodiesel production by heterogeneous catalyst. Vibrational Spectroscopy, 105, 102990. https://doi.org/10.1016/j.vibspec.2019.102990
  48. Rouhany, M., & Montgomery, H. (2019). Global Biodiesel Production: The State of the Art and Impact on Climate Change (pp. 1–14). https://doi.org/10.1007/978-3-030-00985-4_1
  49. Shaah, M. A., Hossain, M. S., Allafi, F., Ab Kadir, M. O., & Ahmad, M. I. (2022). Biodiesel production from candlenut oil using a non-catalytic supercritical methanol transesterification process: optimization, kinetics, and thermodynamic studies. RSC Advances, 12(16), 9845–9861. https://doi.org/10.1039/d2ra00571a
  50. Siregar, E., Simatupang, L., Sembiring, J. H., & Ginting, E. (2024). Production of Biodiesel from Candlenut Seed Oil (Aleurites Moluccana Wild) Using a NaOH/CaO/Ca Catalyst with Microwave Heating. Jurnal Kimia Sains Dan Aplikasi, 27(1), 21–27. https://doi.org/10.14710/jksa.27.1.21-27
  51. Susilowati, E., Hasan, A., & Syarif, A. (2019). Free Fatty Acid Reduction in a Waste Cooking Oil as a Raw Material for Biodiesel with Activated Coal Ash Adsorbent. Journal of Physics: Conference Series, 1167, 012035. https://doi.org/10.1088/1742-6596/1167/1/012035
  52. Sjöström, J.K., Bindler, R., Granberg, T., Kylander, M.E. (2019). Procedure for Organic Matter Removal from Peat Samples for XRD Mineral Analysis. Wetlands, 39(3), 473–481. https://doi.org/10.1007/s13157-018-1093-7
  53. Syazwani, O. N., Rashid, U., Mastuli, M. S., & Taufiq-Yap, Y. H. (2019). Esterification of palm fatty acid distillate (PFAD) to biodiesel using Bi-functional catalyst synthesized from waste angel wing shell (Cyrtopleura costata). Renewable Energy, 131, 187–196. https://doi.org/10.1016/j.renene.2018.07.031
  54. T, A., S, S., S, S. N., J, J., & M, V. (2024). Performance of chemical catalyst in the production of biodiesel from renewable resource: a review. Indian Chemical Engineer, 1–37. https://doi.org/10.1080/00194506.2024.2398496
  55. Tomić, M., Đurišić-Mladenović, N., Mićić, R., Simikić, M., & Savin, L. (2019). Effects of accelerated oxidation on the selected fuel properties and composition of biodiesel. Fuel, 235, 269–276. https://doi.org/10.1016/j.fuel.2018.07.123
  56. Vilas Bôas, R. N., & Mendes, M. F. (2022). A review of biodiesel production from non edible raw materials using the transesterification process with a focus on influence of feedstock composition and free fatty acid. Journal of the Chilean Chemical Society, 67(1), 5433–5444. https://doi.org/10.4067/S0717-97072022000105433
  57. Widayat, W., Maheswari, N. T., Fitriani, W., Buchori, L., Satriadi, H., Kusmiyati, K., & Ngadi, N. (2023). Preparation of MgO-CaO/SiO2 catalyst from dolomite and geothermal solid waste for biodiesel production. International Journal of Renewable Energy Development, 12(3), 541-549. https://doi.org/10.14710/ijred.2023.51573
  58. Wong, Y. C., Tan, Y. P., Taufiq-Yap, Y. H., Ramli, I., & Tee, H. S. (2015). Biodiesel production via transesterification of palm oil by using CaO–CeO2 mixed oxide catalysts. Fuel, 162, 288–293. https://doi.org/10.1016/j.fuel.2015.09.012
  59. Wu, G., Ge, J. C., & Choi, N. J. (2020). A Comprehensive Review of the Application Characteristics of Biodiesel Blends in Diesel Engines. Applied Sciences, 10(22), 8015. https://doi.org/10.3390/app10228015
  60. Yildiz, I., Caliskan, H., & Mori, K. (2022). Assessment of biofuels from waste cooking oils for diesel engines in terms of waste-to-energy perspectives. Sustainable Energy Technologies and Assessments, 50, 101839. https://doi.org/10.1016/j.seta.2021.101839
  61. Zhang, N., Xue, H., & Hu, R. (2018). The activity and stability of CeO2@CaO catalysts for the production of biodiesel. RSC Advances, 8(57), 32922–32929. https://doi.org/10.1039/c8ra06884d
  62. Zheng, Y. C., Yu, X. H., & Yang, J. (2017). Synthesis of CaO-CeO2 catalysts by soft template method for biodiesel production. IOP Conference Series: Earth and Environmental Science, 69(1). https://doi.org/10.1088/1755-1315/69/1/012048

Last update:

No citation recorded.

Last update: 2025-11-11 16:14:27

No citation recorded.