skip to main content

Development of WO3/TiO2-NT/Ti photoanode for simultaneously POME degradation, electricity generation, and hydrogen production in a photocatalysis-fuel cell system

1Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia

2Department of Pharmacy, Faculty of Health Science, Universitas Malahayati, Lampung 35152, Indonesia

3Department of Chemical Engineering, Institut Teknologi Indonesia, Tangerang Selatan 15314, Indonesia

Received: 20 Dec 2024; Revised: 17 Jan 2025; Accepted: 26 Feb 2025; Available online: 7 Mar 2025; Published: 1 May 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This research presents a WO₃/TiO₂-NT/Ti photoanode for processing POME waste as well as producing electricity and hydrogen simultaneously. The photoanode in the form of nanocomposites was synthesized using an in-situ anodization method and characterized using Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray (FESEM-EDX), X-ray Diffraction (XRD), Photoluminescence Spectroscopy (PL-Spectra), photocurrent transient, X-ray Photoelectron Spectroscopy (XPS), and UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The results showed that the WO₃/TiO₂-NT/Ti photoanode with 0.3 g of WO₃ precursor added during anodization exhibited the best PFC performance. The system achieved a COD degradation of 84%, hydrogen production of 11.18 mmol/m², and a maximum power density of 0.0375 mW/cm² under visible light irradiation, outperforming the variations with 0.5 g and 0.78 g WO₃ precursor. The enhanced performance was attributed to the formation of a heterojunction between WO₃ and TiO₂, as confirmed by characterization results and performance tests in COD degradation, electricity generation, and hydrogen production. Meanwhile, the addition of 0.5 g and 0.78 g WO₃ precursor reduced photocatalytic performance, likely due to excessive Na₂WO₄·2H₂O during anodization, which could partially cover the active TiO₂-NT/Ti surface and alter the electrochemical oxidation process. The developed WO₃/TiO₂-NT/Ti photoanode offers a promising solution for simultaneous wastewater treatment, clean hydrogen production, and electricity generation, with potential applications in sustainable palm oil processing industries and future renewable energy technologies.

Fulltext View|Download
Keywords: Electricity Generation; Hydrogen Production; Palm Oil Mill Effluent (POME); Photocatalysis-Fuel Cell; WO3/TiO2-NT/Ti Photoanode

Article Metrics:

  1. Alhaji, M. H., Sanaullah, K., Lim, S. F., Khan, A., Hipolito, C. N., Abdullah, M. O., Bhawani, S. A., & Jamil, T. (2016). Photocatalytic treatment technology for palm oil mill effluent (POME) - A review. Process Safety and Environmental Protection, 102, 673–686. https://doi.org/10.1016/j.psep.2016.05.020
  2. Bi, X., Yu, S., Liu, E., Liu, L., Zhang, K., Zang, J., & Zhao, Y. (2020). Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 603(May), 125193. https://doi.org/10.1016/j.colsurfa.2020.125193
  3. Chen, Q., Li, J., Li, X., Huang, K., Zhou, B., Cai, W., & Shangguan, W. (2012). Visible-Light Responsive Photocatalytic Fuel Cell Based on WO3/W Photoanode and Cu2O/Cu Photocathode for Simultaneous Wastewater Treatment and Electricity Generation. Environmental Science & Technology, 46(20), 11451–11458. https://doi.org/10.1021/es302651q
  4. Djurišić, A. B., He, Y., & Ng, A. M. C. (2020). Visible-light photocatalysts: Prospects and challenges. APL Materials, 8(3), 1–24. https://doi.org/10.1063/1.5140497
  5. Ge, J., Zhang, Y., Heo, Y. J., & Park, S. J. (2019). Advanced design and synthesis of composite photocatalysts for the remediation of wastewater: A review. In Catalysts (Vol. 9, Issue 2). https://doi.org/10.3390/catal9020122
  6. He, Y., Chen, K., Leung, M. K. H., Zhang, Y., Li, L., Li, G., Xuan, J., & Li, J. (2022). Photocatalytic fuel cell – A review. Chemical Engineering Journal, 428(May 2021). https://doi.org/10.1016/j.cej.2021.131074
  7. Husein, S., Rustamadji, R. R., Pratiwi, R., Dewi, E. L., & Slamet. (2024). Simultaneous tartrazine-tetracycline removal and hydrogen production in the hybrid electrocoagulation-photocatalytic process using g-C3N4/TiNTAs. Communications in Science and Technology, 9(1), 46–56. https://doi.org/10.21924/cst.9.1.2024.1308
  8. Indira, K., Mudali, U. K., Nishimura, T., & Rajendran, N. (2015). A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications. Journal of Bio- and Tribo-Corrosion, 1(4). https://doi.org/10.1007/s40735-015-0024-x
  9. Kamyab, H., Chelliapan, S., Din, M. F. M., Rezania, S., Khademi, T., & Kumar, A. (2018). Palm Oil Mill Effluent as an Environmental Pollutant. Palm Oil. https://doi.org/10.5772/intechopen.75811
  10. Kee, M. W., Lam, S. M., Sin, J. C., Zeng, H., & Mohamed, A. R. (2020). Explicating charge transfer dynamics in anodic TiO2/ZnO/Zn photocatalytic fuel cell for ameliorated palm oil mill effluent treatment and synchronized energy generation. Journal of Photochemistry and Photobiology A: Chemistry, 391(September 2019), 112353. https://doi.org/10.1016/j.jphotochem.2019.112353
  11. Kustiningsih, I., Pujiastuti, H., Sari, D. K., Rochmat, A., & Slamet. (2023). The Addition of Anthocyanin as a Sensitizer for TiO2 Nanotubes in a Combined Process of Electrocoagulation and Photocatalysis for Methylene Blue Removal. Sustainability, 15(21), 15384. https://doi.org/10.3390/su152115384
  12. Lee, S. L., Ho, L. N., Ong, S. A., Wong, Y. S., Voon, C. H., Khalik, W. F., Yusoff, N. A., & Nordin, N. (2016). Enhanced electricity generation and degradation of the azo dye Reactive Green 19 in a photocatalytic fuel cell using ZnO/Zn as the photoanode. Journal of Cleaner Production, 127, 579–584. https://doi.org/10.1016/j.jclepro.2016.03.169
  13. Li, J., Li, J., Chen, Q., Bai, J., & Zhou, B. (2013). Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. Journal of Hazardous Materials, 262, 304–310. https://doi.org/10.1016/j.jhazmat.2013.08.066
  14. Li, W., Liang, R., Hu, A., Huang, Z., & Zhou, Y. N. (2014). Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts. RSC Advances, 4(70), 36959–36966. https://doi.org/10.1039/c4ra04768k
  15. Lianos, P. (2017). Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen. Applied Catalysis B: Environmental, 210, 235–254. https://doi.org/10.1016/j.apcatb.2017.03.067
  16. Lockman, Z., Sreekantan, S., Ismail, S., Schmidt-Mende, L., & MacManus-Driscoll, J. L. (2010). Influence of anodisation voltage on the dimension of titania nanotubes. Journal of Alloys and Compounds, 503(2), 359–364. https://doi.org/10.1016/j.jallcom.2009.12.093
  17. Lui, G., Jiang, G., Fowler, M., Yu, A., & Chen, Z. (2019). A high performance wastewater-fed flow-photocatalytic fuel cell. Journal of Power Sources, 425(June 2018), 69–75. https://doi.org/10.1016/j.jpowsour.2019.03.091
  18. Luo, X., Liu, F., Li, X., Gao, H., & Liu, G. (2013). WO3/TiO2 nanocomposites: Salt-ultrasonic assisted hydrothermal synthesis and enhanced photocatalytic activity. Materials Science in Semiconductor Processing, 16(6), 1613–1618. https://doi.org/10.1016/j.mssp.2013.04.005
  19. Madaki, Y. S., & Seng, L. (2013). Pollution Control: How feasible is Zero Discharge Concepts in Malaysia Palm Oil Mills. American Journal of Engineering Research (AJER), 2(10), 239–252. http://www.ajer.org/papers/v2(10)/ZB210239252.pdf
  20. Mahadik, M. A., Hwang, I. S., Chae, W. S., Lee, H. H., Choi, S. H., Cho, M., & Jang, J. S. (2023). Synergistic role of hydrogen treatment and heterojunction in H-WO3-x/TiO2-xNT/Ti foil-based photoanodes for photoelectrochemical wastewater detoxification and antibacterial activity. Chemosphere, 318(January), 137973. https://doi.org/10.1016/j.chemosphere.2023.137973
  21. Mokhtarifar, M., Nguyen, D. T., Diamanti, M. V., Kaveh, R., Asa, M., Sakar, M., Pedeferri, M., & Do, T.-O. (2020). Fabrication of dual-phase TiO2/WO3 with post-illumination photocatalytic memory. New Journal of Chemistry, 44(46), 20375–20386. https://doi.org/10.1039/D0NJ04694A
  22. Moksin, N. S. A., Ong, Y. P., Ho, L. N., & Tay, M. G. (2021). Optimization of photocatalytic fuel cells (PFCs) in the treatment of diluted palm oil mill effluent (POME). Journal of Water Process Engineering, 40(January), 1–6. https://doi.org/10.1016/j.jwpe.2020.101880
  23. Momeni, M. M., & Ghayeb, Y. (2016). Preparation of cobalt coated TiO2 and WO3-TiO2 nanotube films via photo-assisted deposition with enhanced photocatalytic activity under visible light illumination. Ceramics International, 42(6), 7014–7022. https://doi.org/10.1016/j.ceramint.2016.01.089
  24. Muttaqin, R., Pratiwi, R., Ratnawati, Dewi, E. L., Ibadurrohman, M., & Slamet. (2022). Degradation of methylene blue-ciprofloxacin and hydrogen production simultaneously using combination of electrocoagulation and photocatalytic process with Fe-TiNTAs. International Journal of Hydrogen Energy, 47(42), 18272–18284. https://doi.org/10.1016/j.ijhydene.2022.04.031
  25. Natu, V., Benchakar, M., Canaff, C., Habrioux, A., Célérier, S., & Barsoum, M. W. (2021). A critical analysis of the X-ray photoelectron spectra of Ti3C2Tz MXenes. Matter, 4(4), 1224–1251. https://doi.org/10.1016/j.matt.2021.01.015
  26. Ong, Y. P., Ho, L. N., Ong, S. A., Banjuraizah, J., Ibrahim, A. H., Lee, S. L., & Nordin, N. (2019). A synergistic heterostructured ZnO/BaTiO3 loaded carbon photoanode in photocatalytic fuel cell for degradation of Reactive Red 120 and electricity generation. Chemosphere, 219, 277–285. https://doi.org/10.1016/j.chemosphere.2018.12.004
  27. Phromma, S., Wutikhun, T., Kasamechonchung, P., Eksangsri, T., & Sapcharoenkun, C. (2020). Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Applied Sciences (Switzerland), 10(3). https://doi.org/10.3390/app10030993
  28. Pratiwi, R., Ibadurrohman, M., Dewi, E. L., & Slamet. (2023). A novel approach in the synthesis of CdS/titania nanotubes array nanocomposites to obtain better photocatalyst performance. Communications in Science and Technology, 8(1), 16–24. https://doi.org/10.21924/cst.8.1.2023.1049
  29. Puyol, D., Barry, E. M., Hülsen, T., & Batstone, D. J. (2017). A mechanistic model for anaerobic phototrophs in domestic wastewater applications: Photo-anaerobic model (PAnM). Water Research, 116, 241–253. https://doi.org/10.1016/j.watres.2017.03.022
  30. Queiroz, B. D., Fernandes, J. A., Martins, C. A., & Wender, H. (2022). Photocatalytic fuel cells: From batch to microfluidics. Journal of Environmental Chemical Engineering, 10(3). https://doi.org/10.1016/j.jece.2022.107611
  31. Ratnawati, Gunlazuardi, J., Dewi, E. L., & Slamet. (2014). Effect of NaBF4 addition on the anodic synthesis of TiO2 nanotube arrays photocatalyst for production of hydrogen from glycerol-water solution. International Journal of Hydrogen Energy, 39(30), 16927–16935. https://doi.org/10.1016/j.ijhydene.2014.07.178
  32. Sim, L. C., Koh, K. S., Leong, K. H., Chin, Y. H., Aziz, A. A., & Saravanan, P. (2020). In situ growth of g-C3N4 on TiO2 nanotube arrays: Construction of heterostructures for improved photocatalysis properties. Journal of Environmental Chemical Engineering, 8(1). https://doi.org/10.1016/j.jece.2019.103611
  33. Slamet, S., Pelawi, L. F., Ibadurrohman, M., Yudianti, R., & Ratnawati. (2022). Simultaneous Decolorization of Tartrazine and Production of H2 in a Combined Electrocoagulation and Photocatalytic Processes using CuO-TiO2 Nanotube Arrays: Literature Review and Experiment. Indonesian Journal of Science and Technology, 7(3), 385–404. https://doi.org/10.17509/ijost.v7i3.51315
  34. Tabassum, S., Zhang, Y., & Zhang, Z. (2015). An integrated method for palm oil mill effluent (POME) treatment for achieving zero liquid discharge - A pilot study. In Journal of Cleaner Production (Vol. 95). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2015.02.056
  35. Tan, H. M., Gouwanda, D., & Poh, P. E. (2018). Adaptive neural-fuzzy inference system vs. anaerobic digestion model No.1 for performance prediction of thermophilic anaerobic digestion of palm oil mill effluent. Process Safety and Environmental Protection, 117(1), 92–99. https://doi.org/10.1016/j.psep.2018.04.013
  36. Thanekar, P., Garg, S., & Gogate, P. R. (2020). Hybrid Treatment Strategies Based on Hydrodynamic Cavitation, Advanced Oxidation Processes, and Aerobic Oxidation for Efficient Removal of Naproxen. Industrial and Engineering Chemistry Research, 59(9), 4058–4070. https://doi.org/10.1021/acs.iecr.9b01395
  37. Vasseghian, Y., Khataee, A., Dragoi, E. N., Moradi, M., Nabavifard, S., Oliveri Conti, G., & Mousavi Khaneghah, A. (2020). Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review. Arabian Journal of Chemistry, 13(11), 8458–8480. https://doi.org/10.1016/j.arabjc.2020.07.016
  38. Wang, Y., Cai, J., Wu, M., Chen, J., Zhao, W., Tian, Y., Ding, T., Zhang, J., Jiang, Z., & Li, X. (2018). Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction. Applied Catalysis B: Environmental, 239(August), 398–407. https://doi.org/10.1016/j.apcatb.2018.08.029
  39. Wang, Z., Lin, Z., Shen, S., Zhong, W., & Cao, S. (2021). Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 42(5), 710–730. https://doi.org/10.1016/S1872-2067(20)63698-1
  40. Xia, L., Bai, J., Li, J., Zeng, Q., Li, X., & Zhou, B. (2016). A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell. Applied Catalysis B: Environmental, 183, 224–230. https://doi.org/10.1016/j.apcatb.2015.10.050
  41. Yu, T., Yang, B., Zhang, R., Yang, C., Arramel, & Jiang, J. (2024). Fabrication of a novel Z-S-scheme photocatalytic fuel cell with the Z-scheme TiO2/GO/g-C3N4 photoanode and S-scheme BiOAc1−xBrx/BiOBr photocathode for TC degradation. Journal of Materials Science and Technology, 188, 11–26. https://doi.org/10.1016/j.jmst.2023.12.004

Last update:

No citation recorded.

Last update: 2025-05-24 13:38:04

No citation recorded.