1Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
2Department of Pharmacy, Faculty of Health Science, Universitas Malahayati, Lampung 35152, Indonesia
3Department of Chemical Engineering, Institut Teknologi Indonesia, Tangerang Selatan 15314, Indonesia
BibTex Citation Data :
@article{IJRED60978, author = {M. Febriansyah Bachri and Saddam Husein and Bambang Heru Susanto and Ratnawati Ratnawati and Slamet Slamet}, title = {Development of WO3/TiO2-NT/Ti photoanode for simultaneously POME degradation, electricity generation, and hydrogen production in a photocatalysis-fuel cell system}, journal = {International Journal of Renewable Energy Development}, volume = {14}, number = {3}, year = {2025}, keywords = {Electricity Generation; Hydrogen Production; Palm Oil Mill Effluent (POME); Photocatalysis-Fuel Cell; WO3/TiO2-NT/Ti Photoanode}, abstract = { This research presents a WO₃/TiO₂-NT/Ti photoanode for processing POME waste as well as producing electricity and hydrogen simultaneously. The photoanode in the form of nanocomposites was synthesized using an in-situ anodization method and characterized using Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray (FESEM-EDX), X-ray Diffraction (XRD), Photoluminescence Spectroscopy (PL-Spectra), photocurrent transient, X-ray Photoelectron Spectroscopy (XPS), and UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The results showed that the WO₃/TiO₂-NT/Ti photoanode with 0.3 g of WO₃ precursor added during anodization exhibited the best PFC performance. The system achieved a COD degradation of 84%, hydrogen production of 11.18 mmol/m², and a maximum power density of 0.0375 mW/cm² under visible light irradiation, outperforming the variations with 0.5 g and 0.78 g WO₃ precursor. The enhanced performance was attributed to the formation of a heterojunction between WO₃ and TiO₂, as confirmed by characterization results and performance tests in COD degradation, electricity generation, and hydrogen production. Meanwhile, the addition of 0.5 g and 0.78 g WO₃ precursor reduced photocatalytic performance, likely due to excessive Na₂WO₄·2H₂O during anodization, which could partially cover the active TiO₂-NT/Ti surface and alter the electrochemical oxidation process. The developed WO₃/TiO₂-NT/Ti photoanode offers a promising solution for simultaneous wastewater treatment, clean hydrogen production, and electricity generation, with potential applications in sustainable palm oil processing industries and future renewable energy technologies. }, pages = {420--428} doi = {10.61435/ijred.2025.60978}, url = {https://ijred.cbiore.id/index.php/ijred/article/view/60978} }
Refworks Citation Data :
This research presents a WO₃/TiO₂-NT/Ti photoanode for processing POME waste as well as producing electricity and hydrogen simultaneously. The photoanode in the form of nanocomposites was synthesized using an in-situ anodization method and characterized using Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray (FESEM-EDX), X-ray Diffraction (XRD), Photoluminescence Spectroscopy (PL-Spectra), photocurrent transient, X-ray Photoelectron Spectroscopy (XPS), and UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS). The results showed that the WO₃/TiO₂-NT/Ti photoanode with 0.3 g of WO₃ precursor added during anodization exhibited the best PFC performance. The system achieved a COD degradation of 84%, hydrogen production of 11.18 mmol/m², and a maximum power density of 0.0375 mW/cm² under visible light irradiation, outperforming the variations with 0.5 g and 0.78 g WO₃ precursor. The enhanced performance was attributed to the formation of a heterojunction between WO₃ and TiO₂, as confirmed by characterization results and performance tests in COD degradation, electricity generation, and hydrogen production. Meanwhile, the addition of 0.5 g and 0.78 g WO₃ precursor reduced photocatalytic performance, likely due to excessive Na₂WO₄·2H₂O during anodization, which could partially cover the active TiO₂-NT/Ti surface and alter the electrochemical oxidation process. The developed WO₃/TiO₂-NT/Ti photoanode offers a promising solution for simultaneous wastewater treatment, clean hydrogen production, and electricity generation, with potential applications in sustainable palm oil processing industries and future renewable energy technologies.
Article Metrics:
Last update:
Last update: 2025-05-24 13:38:04
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
International Journal of Renewable Energy Development (ISSN:2252-4940) published by CBIORE is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.