skip to main content

Renewable Energy from Irrigation Infrastructure: Experimental Insights from a Michell-Banki Micro-Hydropower Prototype in a Colombian Irrigation District

Universidad Surcolombiana, Facultad de Ingeniería, Colombia

Received: 11 Aug 2025; Published: 21 Oct 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Este estudio presenta la caracterización experimental de una micro central hidroeléctrica Michell-Banki instalada en el distrito de riego del Túnel del Río Neiva (Colombia), como alternativa de generación distribuida en zonas rurales no interconectadas. El comportamiento del sistema turbina-generador en condiciones de carga progresiva y flujo variable se evaluó mediante la medición directa de parámetros eléctricos (voltaje, corriente, potencia) y mecánicos (velocidad del rotor). Los resultados muestran que el voltaje generado depende directamente de la velocidad, con una correlación lineal significativa (R2=0.9953), mientras que la potencia eléctrica muestra una tendencia de saturación por encima de un cierto nivel de carga. Se desarrollaron modelos polinómicos para describir la influencia del caudal en la velocidad, el voltaje y la potencia, con coeficientes de determinación superiores al 96%. Estos hallazgos validan el diseño del sistema, demuestran la necesidad de operar cerca del punto hidráulico óptimo y proporcionan conocimientos aplicables a futuras implementaciones de tecnologías similares en contextos rurales.

Note: This article has supplementary file(s).

Fulltext |  Cover Letter
Cover letter
Subject
Type Cover Letter
  Download (14KB)    Indexing metadata
Keywords: Distributed generation; Energy saturation; Experimental correlation; Polynomial modeling.

Article Metrics:

  1. Assefa, E. Y., & Tesfay, A. H. (2025). Effect of Blade Profile on Flow Characteristics and Efficiency of Cross-Flow Turbines. Energies, 18(12). https://doi.org/10.3390/en18123203
  2. Bazzana, D., Zaitchik, B., & Gilioli, G. (2020). Impact of water and energy infrastructure on local well-being: an agent-based analysis of the water-energy-food nexus. Structural Change and Economic Dynamics, 55, 165–176. https://doi.org/10.1016/j.strueco.2020.08.003
  3. Chel, A., & Kaushik, G. (2011). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, 31(1), 91–118. https://doi.org/10.1051/agro/2010029
  4. Derakhshan, S., & Nourbakhsh, A. (2008). Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Experimental Thermal and Fluid Science, 32(3), 800–807. https://doi.org/10.1016/j.expthermflusci.2007.10.004
  5. Elbatran, A. H., Yaakob, O. B., Ahmed, Y. M., & Shehata, A. S. (2018). Numerical and experimental investigations on efficient design and performance of hydrokinetic Banki cross flow turbine for rural areas. Ocean Engineering, 159(May), 437–456. https://doi.org/10.1016/j.oceaneng.2018.04.042
  6. Erdiwansyah, Mahidin, Zaki, M., Asr, G., Muhibbuddin, & Jalaluddin. (2021). A review of renewable energy mini-grid systems in the non-interconnected rural areas: A case study. Journal of Hunan University (Natural Science), 48(1), 133–151. http://www.jonuns.com/index.php/journal/article/view/492
  7. Guo, B., Bacha, S., Alamir, M., & Mohamed, A. (2018). Variable speed micro-hydro power generation system: Review and Experimental results. SYMPOSIUM DE GENIE ELECTRIQUE (SGE 2018), 3–5. https://hal.science/hal-02981922v1
  8. Halder, P., Doppalapudi, A. T., Azad, A. K., & Khan, M. M. K. (2020). Efficient hydroenergy conversion technologies, challenges, and policy implication. In Advances in Clean Energy Technologies. Elsevier Inc. https://doi.org/10.1016/B978-0-12-821221-9.00007-4
  9. Ibañez, L., Escobar, L., Hidalgo, A., Gordón, C., & Cumbajín, M. (2020). Michell-Banki a Promise Turbine for Pico-Hydro in Water Irrigation Channel Lenin. Applied Technologies, First International Conference, ICAT 2019, 305–317. https://doi.org/10.1007/978-3-030-42531-9
  10. Kaygusuz, K. (2011). Energy services and energy poverty for sustainable rural development. Renewable and Sustainable Energy Reviews, 15(2), 936–947. https://doi.org/10.1016/j.rser.2010.11.003
  11. Lamesgin, H. B., & Ali, A. N. (2024). Optimization of screw turbine design parameters to improve the power output and efficiency of micro-hydropower generation. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2327906
  12. López-González, A., Domenech, B., Gómez-Hernández, D., & Ferrer-Martí, L. (2017). Renewable microgrid projects for autonomous small-scale electrification in Andean countries. Renewable and Sustainable Energy Reviews, 79(September 2016), 1255–1265. https://doi.org/10.1016/j.rser.2017.05.203
  13. Niyonzima, J. B., & Hendrick, P. (2021). Lab performance testing of a small Banki-Michell hydraulic turbine for remote applications. Journal of Renewable Energies, 24, 244–260. https://doi.org/10.54966/jreen.v24i2.984
  14. Obaideen, K., Yousef, B. A. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7(July), 100124. https://doi.org/10.1016/j.nexus.2022.100124
  15. Perez-Rodriguez, A. J., Sierra-Del Rio, J., Grisales-Noreña, L. F., & Galvis, S. (2021). Optimization of the efficiency of a michell–banki turbine through the variation of its geometrical parameters using a pso algorith. WSEAS Transactions on Applied and Theoretical Mechanics, 16, 37–46. https://doi.org/10.37394/232011.2021.16.5
  16. Popescu, D., & Duinea, A. (2013). Study of Centrifugal Pump Operating as Turbine in Small Hydropower Plants Faculty of Electrical Engineering. In Recent Researches in Electric Power and Energy Systems (pp. 285–288)
  17. Ramírez Ramírez, L. M., & Cerquera Valderrama, C. (2020). Estudio del potencial energético de un canal ubicado en el distrito de riego USOIGUA municipio de Campoalegre-Huila, para la generación de energía eléctrica mediante la implementación de una turbina [Universidad Surcolombiana]. http://roderic.uv.es/bitstream/handle/10550/51022/TESIS DOCTORAL %28Raquel bañuls bertomeu%29.pdf?sequence=1&isAllowed=y
  18. Reyna, T., Irazusta, B., Reyna, S., Labaque, M., & Riha, C. (2019). Development of Micro Hydro Turbines As Renewable Energy Applications for Educational Purposes. Proceedings of the IAHR World Congress, 5949–5959. https://doi.org/10.3850/38WC092019-1426
  19. Reyna, T., Reyna, S., Lábaque, M., Riha, C., & Groso, F. (2016). Applications of Small Scale Renewable Energy. Journal of Business and Economics, 7(2), 258–266
  20. https://doi.org/10.15341/jbe(2155-7950)/02.07.2016/008
  21. Sammartano, V., Aricò, C., Carravetta, A., Fecarotta, O., & Tucciarelli, T. (2013). Banki-Michell optimal design by computational fluid dynamics testing and hydrodynamic analysis. Energies, 6(5), 2362–2385. https://doi.org/10.3390/en6052362
  22. Sammartano, V., Filianoti, P., Sinagra, M., Tucciarelli, T., Scelba, G., & Morreale, G. (2016). Coupled Hydraulic and Electronic Regulation for Banki Turbines. Procedia Engineering, 162, 419–425. https://doi.org/10.1016/j.proeng.2016.11.083
  23. Sinagra, M., Sammartano, V., Aricò, C., Collura, A., & Tucciarelli, T. (2014). Cross-Flow turbine design for variable operating conditions. Procedia Engineering, 70, 1539–1548. https://doi.org/10.1016/j.proeng.2014.02.170
  24. Sotto Capera, F., Ardila Marín, J. G., & Cerquera Sandoval, C. (2023). Numerical Study of the Opening Angle Incidence in Michell-Banki Turbine’s Performance without Guide Blades. International Journal of Engineering Research in Africa, 67, 101–122. https://doi.org/10.4028/p-EO6We7
  25. Sritram, P., & Suntivarakorn, R. (2021). The efficiency comparison of hydro turbines for micro power plant from free vortex. Energies, 14(23). https://doi.org/10.3390/en14237961
  26. Tarimer, I., & Yuzer, E. O. (2011). Designing of a permanent magnet and directly driven synchronous generator for low speed turbines. Elektronika Ir Elektrotechnika, 6(6), 15–18. https://doi.org/10.5755/j01.eee.112.6.436
  27. Vasić, M. P., Matejic, M., & Blagojevic, M. (2018). Influence Analysis of Selected Turbine to Working Influence Analysis of Selected Turbine to Working Characteristics of Small Hydro Power Plants. Machine Design, 10(1), 11–16. https://doi.org/10.24867/MD.10.2018.1.11-16
  28. Verde, A., Lastres, O., Hernández, G., Ibañez, G., Verea, L., & Sebastian, P. J. (2018). A new method for characterization of small capacity wind turbines with permanent magnet synchronous generator: An experimental study. Heliyon, 4(8). https://doi.org/10.1016/j.heliyon.2018.e00732
  29. Wendimu, A., Yoseph, T., & Ayalew, T. (2023). An overview of the role of irrigation in the attainment of sustainable development goals through hunger and poverty alleviation in Ethiopia. International Journal of Innovative Research and Scientific Studies, 6(4), 980–993. https://doi.org/10.53894/ijirss.v6i4.2215

Last update:

No citation recorded.

Last update: 2025-10-22 16:09:07

No citation recorded.