skip to main content

Influence of profile geometry on the self-starting capability of an H-Darrieus turbine

1Center for Research in Engineering and Applied Sciences, Universidad Autónoma del Estado de Morelos, Morelos, Mexico

2Center for Transdisciplinary Research in Psychology, Universidad Autónoma del Estado de Morelos, Morelos, Mexico

3Institute of Renewable Energies, Universidad Nacional Autónoma de México, Mexico

4 Institute of Engineering and Technology, Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico

View all affiliations
Received: 16 Feb 2025; Revised: 8 Apr 2025; Accepted: 5 May 2025; Available online: 17 May 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

To spread the use of Wind H-Darrieus turbines to electricity generation in urban or rural environments is necessary to improve some of its main drawbacks such as: aerodynamic efficiency, self-starting capability and torque fluctuations. The aims of this study are to enhance the aerodynamic efficiency and self-starting capability of an H-Darrieus turbine through wind tunnel tests combined using a 3D numerical study using Computational Fluid Dynamics (CFD). The NREL S815 profile and four modified versions were evaluated, including one with a 19.2% increase in thickness and three chord-to-diameter ratios: 𝐶/𝐷=0.15, 0.20, and 0.225. These configurations were tested at wind speeds of 6 and 8 m/s. Static torque was measured experimentally, alongside numerical calculations of flow and pressure distribution. A significant correlation between chord length and turbine performance was observed. The 𝐶/𝐷=0.20 profile exhibited increases of up to 50.27% and 58.88% in static torque at 6 and 8 m/s, respectively. The static torque coefficient increased from 0.0063 in the original profile to 0.0447 in the C/D=0.20 profile, directly contributing to the improvement of self-starting capability. Although the 𝐶/𝐷=0.20 geometry showed improvements, the C/D=0.225 profile did not show additional performance gains, indicating that further increases in chord length do not improve turbine performance. The profile modified with a 19.2% increase in thickness ranked just below the 𝐶/𝐷=0.2 profile, exhibiting torque increases of 41% and 25.22% at 6 and 8 m/s, respectively. These findings confirm that chord-to-diameter ratio adjustments play a critical role in boosting torque generation in vertical-axis wind turbines.

Fulltext View|Download
Keywords: H-Darrieus turbine; maximum thickness; NREL S815; profile chord; self-starting capability

Article Metrics:

  1. Abdolahifar, A., & Karimian, S. M. H. (2022). A comprehensive three-dimensional study on Darrieus vertical axis wind turbine with slotted blade to reduce flow separation. Energy, 248, 123632. https://doi.org/10.1016/j.energy.2022.123632
  2. Akhter, M. Z., Jawahar, H. K., Omar, F. K., & Elnajjar, E. (2024). Performance characterization of a slotted wind turbine airfoil featuring passive blowing. Energy Reports, 11(November 2023), 720–735. https://doi.org/10.1016/j.egyr.2023.12.027
  3. Aziz, M., Khalifa, M. A., Abdelrahman, M. A., Elshimy, H., & Elsayed A. M. (2025). Multi-slotted airfoil design for enhanced aerodynamic performance and economic efficiency. Scientific Reports, 15, 4290. https://doi.org/10.1038/s41598-025-87000-z
  4. Bel Laveda, O., Roche, M. A., Phadtare, M., Sauge, L., Xavier, K. J., Bhat, G., Saxena, D., Saini, J. S., & Verdin, P. G. (2023). Numerical Investigation of Aerodynamic Performance and Structural Analysis of a 3D J-Shaped Based Small-Scale Vertical Axis Wind Turbine. Energies, 16(20). https://doi.org/10.3390/en16207024
  5. Benmoussa, A., & Páscoa, J. C. (2023). Enhancement of a cycloidal self-pitch vertical axis wind turbine performance through DBD plasma actuators at low tip speed ratio. International Journal of Thermofluids, 17, 100258. https://doi.org/10.1016/j.ijft.2022.100258
  6. Bhavsar, H., Roy, S., & Niyas, H. (2023). Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration. Energy, 263(PA), 125666. https://doi.org/10.1016/j.energy.2022.125666
  7. Brauwer, C. P. De, Ellis, G., Wade, R., & Volkmer, S. A. (2020). REN21 Global Status Report 2020 (Issue August)
  8. Buchner, A., Lohry, M. W., Martinelli, L., Soria, J., & Smits, A. J. (2015). Dynamic stall in vertical axis wind turbines : Comparing experiments and computations. Journal of Wind Engineering and Industrial Aerodynamics, 146, 163–171. https://doi.org/10.1016/j.jweia.2015.09.001
  9. Celik, Y., Ingham, D., Ma, L., & Pourkashanian, M. (2023). Novel hybrid blade design and its impact on the overall and self-starting performance of a three-dimensional H-type Darrieus wind turbine. Journal of Fluids and Structures, 119, 103876. https://doi.org/10.1016/j.jfluidstructs.2023.103876
  10. Farzadi, R., & Bazargan, M. (2023). 3D numerical simulation of the Darrieus vertical axis wind turbine with J-type and straight blades under various operating conditions including self-starting mode. Energy, 278(PB), 128040. https://doi.org/10.1016/j.energy.2023.128040
  11. Ghafoorian, F., Enayati, E., Mirmotahari, S. R., &Wan, H. (2024). Self-starting improvement and performance enhancement in Darrieus VAWTs using auxiliary baldes and deflectors. Machines, 12, 806. https://doi.org/10.3390/machines12110806
  12. Ghafoorian, F., Mirmotaharai, S.R., Eydizadeh, M., & Mehrpooya, M. (2025). A systematic investigation on the hybrid Darrieus-Savonius vertical axis wind turbine aerodynamic performance and self starting capability improvement by installing a curtain. Next Energy, 6, 100203. https://doi.org/10.1016/j.nxener.2024.100203
  13. Guo, Y., Li, X., Sun, L., Gao, Y., Gao, Z., & Chen, L. (2019). Aerodynamic analysis of a step adjustment method for blade pitch of a VAWT. Journal of Wind Engineering & Industrial Aerodynamics, 188(February), 90–101. https://doi.org/10.1016/j.jweia.2019.02.023
  14. Hand, B., Kelly, G., & Cashman, A. (2021). Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renewable and Sustainable Energy Reviews, 139(January). https://doi.org/10.1016/j.rser.2020.110699
  15. Hashem, I., & Mohamed, M. H. (2018). Aerodynamic performance enhancements of H-rotor Darrieus wind turbine. Energy, 142, 531–545. https://doi.org/10.1016/j.energy.2017.10.036
  16. Hassan, S. S. ul, Javaid, M. T., Rauf, U., Nasir, S., Shahzad, A., & Salamat, S. (2023). Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles. Energy, 270(October 2022), 126978. https://doi.org/10.1016/j.energy.2023.126978
  17. Hau, E. (2013). Wind Turbines: Fundamentals, Technologies, Application, Economics. Springer Science & Business Media. https://doi.org/10.4324/9780203103289-9
  18. He, J., Jin, X., Xie, S., Cao, L., Wang, Y., Lin, Y., & Wang, N. (2020). CFD modeling of varying complexity for aerodynamic analysis of H-vertical axis wind turbines. Renewable Energy, 145, 2658–2670. https://doi.org/10.1016/j.renene.2019.07.132
  19. Holstead, K. L., Galán-Díaz, C., & Sutherland, L. A. (2017). Discourses of on-farm wind energy generation in the UK farming press. Journal of Environmental Policy and Planning, 19(4), 391–407. https://doi.org/10.1080/1523908X.2016.1224157
  20. Huang, H., Li, J., & Li, G. (2023). Improving the self-starting and operating characteristics of vertical axis wind turbine by changing center distance in part of blades. Journal of Building Engineering, 68(January), 105974. https://doi.org/10.1016/j.jobe.2023.105974
  21. Hutchinson, M., & Zhao, F. (2023). Global Wind Report | GWEC. Global Wind Energy Council
  22. International Energy Agency. (2020). Analysis and Forecast to 2025, Executive Summary
  23. Isataev, M., Manatbayeb, R., Seydulla, Z., Kalassov, N., Yershina, A., & Baizhuma, Zhandos. (2025). Experimental and computational study of the aerodynamic characteristics of a Darrieus rotor with assymetrical blades to increase turbine efficiency under low wind velocity conditions. Applied system Innovation, 8, 49. https://doi.org/10.3390/asi8020049
  24. Jin, X., Wang, Y., Ju, W., He, J., & Xie, S. (2018). Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation. Renewable Energy, 115, 41–53. https://doi.org/10.1016/j.renene.2017.08.012
  25. Kaya, M. N., Kose, F., Ingham, D., Ma, L., & Pourkashanian, M. (2018). Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades. Journal of Wind Engineering and Industrial Aerodynamics, 176(December 2017), 166–173. https://doi.org/10.1016/j.jweia.2018.03.023
  26. Li, X., Zhou, S., & Zhao, Y. (2023). Onshore and offshore wind power generation forecasting using a novel flexible time-varying fractional nonlinear grey model. Energy Conversion and Management, 297, 117695. https://doi.org/10.1016/j.enconman.2023.117695
  27. Maalouly, M., Souaiby, M., ElCheikh, A., Issa, J. S., & Elkhoury, M. (2022). Transient analysis of H-type Vertical Axis Wind Turbines using CFD. Energy Reports, 8, 4570–4588. https://doi.org/10.1016/j.egyr.2022.03.136
  28. Martinez, R., Urquiza, G., Castro, L., & C., G. J. (2021). Shape effect of thickness of the NREL S815 profile on the performance of the H-rotor Darrieus turbine. Journal of Renewable and Sustainable Energy, 13(1). https://doi.org/10.1063/5.0015083
  29. Miller, M. A., Duvvuri, S., & Hultmark, M. (2021). Solidity effects on the performance of vertical-axis wind turbines. Flow, 1, E9. https://doi.org/10.1017/flo.2021.9
  30. Mohamed, M. H., Dessoky, A., & Alqurashi, F. (2019). Blade shape effect on the behavior of the H-rotor Darrieus wind turbine: Performance investigation and force analysis. Energy, 179, 1217-1234. https://doi.org/10.1016/j.energy.2019.05.069
  31. Rezaeiha, A., Montazeri, H., & Blocken, B. (2020). A framework for preliminary large-scale urban wind energy potential assessment : Roof-mounted wind turbines. Energy Conversion and Management, 211(March), 112770. https://doi.org/10.1016/j.enconman.2020.112770
  32. Sengupta, A. R., Biswas, A., & Gupta, R. (2017). The aerodynamics of high solidity unsymmetrical and symmetrical blade H-Darrieus rotors in low wind speed conditions. Journal of Renewable and Sustainable Energy, 9(4), 1–11. https://doi.org/10.1063/1.4999965
  33. Sengupta, A. R., Biswas, A., & Gupta, R. (2019). Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement. Renewable Energy, 139, 1412–1427. https://doi.org/10.1016/j.renene.2019.03.054
  34. Tjiu, W., Marnoto, T., Mat, S., Ruslan, M. H., & Sopian, K. (2015a). Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations. Renewable Energy, 75, 50–67. https://doi.org/10.1016/j.renene.2014.09.038
  35. Tjiu, W., Marnoto, T., Mat, S., Ruslan, M. H., & Sopian, K. (2015b). Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renewable Energy, 75, 560–571. https://doi.org/10.1016/j.renene.2014.10.039
  36. Tong, G., Li, Y., Tagawa, K., & Feng, F. (2023). Effects of blade airfoil chord length and rotor diameter on aerodynamic performance of straight-bladed vertical axis wind turbines by numerical simulation. Energy, 265(November 2022), 126325. https://doi.org/10.1016/j.energy.2022.126325
  37. Toudarbari, S., Maghrebi, M. J., & Hashemzadeh, A. (2021). Evaluation of Darrieus wind turbine for different highway settings using CFD simulation. Sustainable Energy Technologies and Assessments, 45. https://doi.org/10.1016/j.seta.2021.101077
  38. Wafula, D., Otieno, C., & Ngugi, J. (2020). An experimental investigation into performance characteristics of H-shaped and Savonius-type VAWT rotors. Scientific African, 10, 2468–2276. https://doi.org/10.1016/j.sciaf.2020.e00603
  39. Wong, K. H., Chong, W. T., Sukiman, N. L., Shiah, Y. C., Poh, S. C., Sopian, K., & Wang, W. C. (2018). Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine. Energy Conversion and Management, 160 (October 2017), 109–125. https://doi.org/10.1016/j.enconman.2018.01.029
  40. Xu, Z., Dong, X., Li, K., Zhou, Q., Zhao, Y., (2024). Study of the self starting performance of a vertical-axis wind turbine. Journal of Applied Fluid Mechanics, 17, 1261-1276. https://doi.org/10.47176/jafm.17.6.2295
  41. Zhang, H., Hu, Y., & Wang, W. (2024). Wind tunnel experimental study on the aerodynamic characteristics of straight-bladed vertical axis wind turbine. International Journal of Sustainable Energy, 43, 2305035. https://doi.org/10.1080/14786451.2024.2305035
  42. Zhao, Z., Chen, K., Wang, Q., Su, T., & Hu, H. (2025) Parameter optimization of a H-type three-blade contra-rotating vertical-axis wind turbine at low tip-speed ratio. Journal of Applied Fluid Mechanics, 18 (6), 1470-1482. https://doi.org/10.47176/jafm.18.6.3189
  43. Zidane, I. F., Ali, H. M., Swadener, G., Eldrainy, Y. A., & Shehata, A. I. (2023). Effect of upstream deflector utilization on H-Darrieus wind turbine performance: An optimization study. Alexandria Engineering Journal, 63, 175–189. https://doi.org/10.1016/j.aej.2022.07.052
  44. Zulkefli, N. F., Nurdin, M. A., & Nur, N. M. (2024). Performance Analysis of H-Rotor Darrieus Wind Turbine with Whale Tubercles Leading Edge Blades. Journal of Aeronautics, Astronautics and Aviation, 56(1), 365–373. https://doi.org/10.6125/JoAAA.202403_56(1S).25

Last update:

No citation recorded.

Last update: 2025-07-11 12:32:57

No citation recorded.