skip to main content

Impact of crosslinking on quaternary ammonium poly(vinyl alcohol)/polyquaternium-7 anion exchange membranes for alkaline polymer electrolyte fuel cells

1Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Indonesia

2Membrane Research Center, Diponegoro University, Indonesia

3Department of Chemistry, Faculty of Science and Mathematics, Diponegoro University, Indonesia

4 Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Austria

5 Institute of Chemical Engineering and Environmental Technology, Graz University of Technology, Indonesia

View all affiliations
Received: 27 Nov 2024; Revised: 6 Apr 2025; Accepted: 8 May 2025; Available online: 20 May 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Alkaline Polymer Electrolyte Fuel Cells (APEFCs) have emerged as a promising candidate for clean energy production. Anion exchange membrane (AEM) is an essential element of alkaline polymer electrolyte fuel cells for its role in facilitating hydroxide ion conduction. The objective of this study is to investigate the effect of a glutaraldehyde-based crosslinker solution on the performance of anion exchange membranes (AEMs) fabricated using quaternary ammonium poly (vinyl alcohol) (QPVA) as the backbone polymer and polyquaternium-7 as the second polymer. The introduction of a glutaraldehyde-based crosslinking agent was purposed to enhance membrane stability and reduce excessive swelling. The study evaluates the impact of varying glutaraldehyde concentrations on membrane performance. FTIR analysis confirms the presence of key functional groups of QPVA, polyquaternium-7, and the crosslinking agent. SEM images reveal that the membranes demonstrate dense and homogeneous physical structure. The results show that water uptake, swelling degree, ion exchange capacity (IEC), and hydroxide conductivity are influenced by the concentration of the glutaraldehyde solution. The QP-GA-13 AEM exhibited the best overall performance, achieving the highest tensile strength of 31.1 MPa and the highest hydroxide ion conductivity of 4.15 mS cm⁻¹ at 70°C. In single-cell tests, this membrane delivered a maximum power density of 85 mW cm⁻² and a current density of 350 mA cm⁻² at 80°C under humidified oxygen conditions.
Fulltext View|Download
Keywords: poly (vinyl alcohol); polyquaternium-7; glutaraldehyde; fuel cell; anion exchange membranes
Funding: Universitas Diponegoro

Article Metrics:

  1. Abdi, Z. G., Chen, J.-C., Chiu, T.-H., Yang, H., & Yu, H.-H. (2021). Synthesis of ionic polybenzimidazoles with broad ion exchange capacity range for anion exchange membrane fuel cell application. Journal of Polymer Science, 59(18), 1–13. https://doi.org/10.1002/pol.20210409
  2. Al-Shetwi, A. Q. (2022). Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Science of the Total Environment, 822, 153645. https://doi.org/10.1016/j.scitotenv.2022.153645
  3. Alhulaybi, Z. A., & Dubdub, I. (2024). Kinetics Study of PVA Polymer by Model-Free and Model-Fitting Methods Using TGA. Polymers, 16(5), 1–13. https://doi.org/10.3390/polym16050629
  4. Ayaz, S., Yao, Z. Y., Chen, Y. J., & Yu, H. Y. (2022). Preparation of poly(arylene ether ketone) based anion exchange membrane with pendant pyrimidinium and pyridazinium cation derivatives for alkaline fuel cell. Journal of Membrane Science, 659(June), 120778. https://doi.org/10.1016/j.memsci.2022.120778
  5. Ayaz, S., Yao, Z. Y., Yang, Y., & Yu, H. Y. (2023). Chemically stable anion exchange membrane with 2,6-protected pendant pyridinium cation for alkaline fuel cell. Journal of Membrane Science, 680(March), 121736. https://doi.org/10.1016/j.memsci.2023.121736
  6. Basso Peressut, A., Montagna, J., Moretti, P., Arrigoni, A., Latorrata, S., Bertarelli, C., & Dotelli, G. (2023). Development and characterization of crosslinked PPO-based anion exchange membranes for AEM fuel cells. Solid State Ionics, 394(October 2022), 116212. https://doi.org/10.1016/j.ssi.2023.116212
  7. Chen, Y., Li, P., Yuan, C., Zeng, L., Wang, J., Li, B., & Wei, Z. (2022). Anion Exchange Membranes Synthesized by Acetalization of Poly (vinyl alcohol) for Fuel Cells. ACS Applied Energy Materials, 5(6), 7748–7757. https://doi.org/10.1021/acsaem.2c01217
  8. Daud, S. N. S. S., Norddin, M. N. A. M., Jaafar, J., & Sudirman, R. (2021). Development of sulfonated poly(ether ether ketone)/polyethersulfone -crosslinked quaternary ammonium poly(ether ether ketone) bipolar membrane electrolyte via hot-press approach for hydrogen/oxygen fuel cell. International Journal of Energy Research, November 2020, 1–19. https://doi.org/10.1002/er.6453
  9. Du, S., Huang, S., Xie, N., Zhang, T., Xu, Y., Ning, X., Chen, P., Chen, X., & An, Z. (2022). New block poly(ether sulfone) based anion exchange membranes with rigid side-chains and high-density quaternary ammonium groups for fuel cell application. Polymer Chemistry, 13(30), 4395–4405. https://doi.org/10.1039/d2py00588c
  10. Du, S., Li, S., Xie, N., Xu, Y., Weng, Q., Ning, X., Chen, P., Chen, X., & An, Z. (2022). Development of rigid side-chain poly(ether sulfone)s based anion exchange membrane with multiple annular quaternary ammonium ion groups for fuel cells. Polymer, 251(April), 124919. https://doi.org/10.1016/j.polymer.2022.124919
  11. Gadhave, R. V., Mahanwar, P. A., & Gadekar, P. T. (2019). Effect of glutaraldehyde on thermal and mechanical properties of starch and polyvinyl alcohol blends. Designed Monomers and Polymers, 22(1), 164–170. https://doi.org/10.1080/15685551.2019.1678222
  12. Hdidar, M., Chaari, M., Haddar, N., Megdiche, M., & Arous, M. (2025). Synthesis and characterization of polyvinyl alcohol crosslinked with various degrees of oxalic acid for advanced ionic conductive applications. Ionics, 0123456789. https://doi.org/10.1007/s11581-025-06303-3
  13. Jheng, L. C., Hsu, C. Y., & Yeh, H. Y. (2021). Anion exchange membranes based on imidazoline quaternized polystyrene copolymers for fuel cell applications. Membranes, 11(11). https://doi.org/10.3390/membranes11110901
  14. Liu, Y., Zhang, B., Kinsinger, C. L., Yang, Y., Seifert, S., Yan, Y., Mark Maupin, C., Liberatore, M. W., & Herring, A. M. (2016). Anion exchange membranes composed of a poly(2,6-dimethyl-1,4-phenylene oxide) random copolymer functionalized with a bulky phosphonium cation. Journal of Membrane Science, 506, 50–59. https://doi.org/10.1016/j.memsci.2016.01.042
  15. Mothupi, M. L., & Msomi, P. F. (2023). Quaternized Polyethersulfone (QPES) Membrane with Imidazole Functionalized Graphene Oxide (ImGO) for Alkaline Anion Exchange Fuel Cell Application. Sustainability (Switzerland), 15(3). https://doi.org/10.3390/su15032209
  16. Roschger, M., Wolf, S., Billiani, A., Mayer, K., Hren, M., Gorgieva, S., Genorio, B., & Hacker, V. (2023). Study on Commercially Available Membranes for Alkaline Direct Ethanol Fuel Cells. ACS Omega, 8(23), 20845–20857. https://doi.org/10.1021/acsomega.3c01564
  17. Roschger, M., Wolf, S., Genorio, B., & Hacker, V. (2022). Effect of PdNiBi Metal Content: Cost Reduction in Alkaline Direct Ethanol Fuel Cells. Sustainability (Switzerland), 14(22). https://doi.org/10.3390/su142215485
  18. Roschger, M., Wolf, S., Mayer, K., Billiani, A., Genorio, B., Gorgieva, S., & Hacker, V. (2023). Influence of the electrocatalyst layer thickness on alkaline DEFC performance. Sustainable Energy and Fuels, 7(4), 1093–1106. https://doi.org/10.1039/d2se01729f
  19. Samsudin, A. M., Abdullah, A., Nasher, K., & Kamal, M. T. (2024). Poly (vinyl alcohol)/Polyquaternium-7 Anion Exchange Membranes for Alkaline Polymer Electrolyte Fuel Cells. E3S Web of Conferences, 503, 08006. https://doi.org/10.1051/e3sconf/202450308006
  20. Samsudin, A. M., Bodner, M., & Hacker, V. (2022). A Brief Review of Poly ( Vinyl Alcohol ) -Based Anion Exchange Membranes for Alkaline Fuel Cells. Polymer, 14, 3565. https://doi.org/10.3390/polym14173565
  21. Samsudin, A. M., & Hacker, V. (2021a). Effect of Crosslinking on the Properties of QPVA/PDDA Anion Exchange Membranes for Fuel Cells Application. Journal of The Electrochemical Society. https://doi.org/10.1149/1945-7111/abf781
  22. Samsudin, A. M., & Hacker, V. (2021b). Effect of Crosslinking on the Properties of QPVA/PDDA Anion Exchange Membranes for Fuel Cells Application. Journal of The Electrochemical Society, 168(4), 044526. https://doi.org/10.1149/1945-7111/abf781
  23. Samsudin, A. M., Rokhati, N., Basid, N., Prasetya, A., Nasher, K., & Kamal, M. T. (2024). Synthesis and Properties of QPVA/Polyquaternium-7 Anion Exchange Membranes for Alkaline Fuel Cells. Journal of Membrane Science and Research, 10(3), 2017389 Journal. https://doi.org/10.22079/JMSR.2024.2017389.1641
  24. Samsudin, A. M., Roschger, M., Wolf, S., & Hacker, V. (2022). Preparation and Characterization of QPVA/PDDA Electrospun Nanofiber Anion Exchange Membranes for Alkaline Fuel Cells. Nanomaterials, 12(22), 3965. https://doi.org/10.3390/nano12223965
  25. Son, T. Y., Kim, T. H., & Nam, S. Y. (2020). Crosslinked pore-filling anion exchange membrane using the cylindrical centrifugal force for anion exchange membrane fuel cell system. Polymers, 12(11), 1–15. https://doi.org/10.3390/polym12112758
  26. Sonker, A. K., Rathore, K., Nagarale, R. K., & Verma, V. (2018). Crosslinking of Polyvinyl Alcohol (PVA) and Effect of Crosslinker Shape (Aliphatic and Aromatic) Thereof. Journal of Polymers and the Environment, 26(5), 1782–1794. https://doi.org/10.1007/s10924-017-1077-3
  27. Tao, R., Shao, M., & Kim, Y. (2024). Polyarylene-Based Anion Exchange Membranes for Fuel Cells. Chemistry - A European Journal, 30(41), 1–9. https://doi.org/10.1002/chem.202401208
  28. Vijayakumar, V., Son, T. Y., Im, K. S., Chae, J. E., Kim, H. J., Kim, T. H., & Nam, S. Y. (2021). Anion Exchange Composite Membranes Composed of Quaternary Ammonium-Functionalized Poly(2,6-dimethyl-1,4-phenylene oxide) and Silica for Fuel Cell Application. ACS Omega, 6(15), 10168–10179. https://doi.org/10.1021/acsomega.1c00247
  29. Wang, F., Yang, W., Lu, H., Chen, J., Gao, S., & Shen, C. (2024). Preparation and Property Investigation of Chitosan-Based Anion- Exchange Membranes with Different Cross-Linking Structures. Energy Fuels, 38(2), 1487–1495. https://doi.org/10.1021/acs.energyfuels.3c04374
  30. Wang, J., Zhang, C., Jiang, Y., Chen, J., Gao, S., & Shen, C. (2024). Preparation and Properties of Poly(Vinyl Alcohol)-Based Anion-Exchange Membranes with Different Cross-Linked Structures. Energy and Fuels, 38(13), 12087–12097. https://doi.org/10.1021/acs.energyfuels.4c01279
  31. Wang, Y., Wang, D., Wang, J., & Wang, L. (2020). Preparation and characterization of a sol-gel derived silica/PVA-Py hybrid anion exchange membranes for alkaline fuel cell application. Journal of Electroanalytical Chemistry, 873, 114342. https://doi.org/10.1016/j.jelechem.2020.114342
  32. Xue, B., Wang, Q., Zheng, J., Li, S., & Zhang, S. (2020). Bi-guanidinium-based crosslinked anion exchange membranes : Synthesis , characterization , and properties. Journal of Membrane Science, 601(February), 117923. https://doi.org/10.1016/j.memsci.2020.117923
  33. Yang, Z., Zhang, M., Xiao, Y., Zhang, X., & Fan, M. (2021). Facile Fabrication of Poly(vinyl alcohol)/Polyquaternium-10 (PVA/PQ-10) Anion Exchange Membrane with Semi-Interpenetrating Network. Macromolecular Materials and Engineering, 306(1), 1–12. https://doi.org/10.1002/mame.202000506
  34. Zhang, J. (2024). Energy access challenge and the role of fossil fuels in meeting electricity demand: Promoting renewable energy capacity for sustainable development. Geoscience Frontiers, 15(5), 101873. https://doi.org/10.1016/j.gsf.2024.101873
  35. Zhang, Z., Liu, Y., Lin, S., & Wang, Q. (2020). Preparation and properties of glutaraldehyde crosslinked poly(vinyl alcohol) membrane with gradient structure. Journal of Polymer Research, 27(8), 0–6. https://doi.org/10.1007/s10965-020-02223-0
  36. Zhao, G., Chen, J., Sun, W., & Pan, H. (2021). Non-Platinum Group Metal Electrocatalysts toward Efficient Hydrogen Oxidation Reaction. Advanced Functional Materials, 31(20), 1–12. https://doi.org/10.1002/adfm.202010633
  37. Zhao, Y., Yoshimura, K., Mahmoud, A. M. A., Yu, H. C., Okushima, S., Hiroki, A., Kishiyama, Y., Shishitani, H., Yamaguchi, S., Tanaka, H., Noda, Y., Koizumi, S., Radulescu, A., & Maekawa, Y. (2020). A long side chain imidazolium-based graft-type anion-exchange membrane: Novel electrolyte and alkaline-durable properties and structural elucidation using SANS contrast variation. Soft Matter, 16(35), 8128–8143. https://doi.org/10.1039/d0sm00947d
  38. Zhou, T., Cai, L., & Qiao, J. (2020). Application of a novel PUB enhanced semi-interpenetrating chitosan-based anion exchange membrane. International Journal of Energy Research, 44(3), 1607–1623. https://doi.org/10.1002/er.4972
  39. Zhou, T., Zhang, J., Jingfu, J., Jiang, G., Zhang, J., & Qiao, J. (2013). Poly(ethylene glycol) plasticized poly(vinyl alcohol)/poly(acrylamide-co- diallyldimethylammonium chloride) as alkaline anion-exchange membrane for potential fuel cell applications. Synthetic Metals, 167(1), 43–50. https://doi.org/10.1016/j.synthmet.2013.02.008
  40. Ziv, N., & Dekel, D. R. (2018). A practical method for measuring the true hydroxide conductivity of anion exchange membranes. Electrochemistry Communications, 88(February), 109–113. https://doi.org/10.1016/j.elecom.2018.01.021

Last update:

No citation recorded.

Last update: 2025-07-09 14:13:47

No citation recorded.