skip to main content

Hybrid renewable energy system design for a green port using HOMER Pro: A techno-economic assessment

1Institute of Postgraduate Education, Ho Chi Minh City University of Transport, Ho Chi Minh City, Viet Nam

2Communist Review Organ of Political Theory of Vietnam, Communist Party's Central Committee, Viet Nam

3Academy of Politics Region II, Ho Chi Minh City, Viet Nam

Received: 15 Jan 2025; Revised: 10 May 2025; Accepted: 22 May 2025; Available online: 7 Jun 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Maritime plays an important role in the national economy since a large number of goods in the world are transported by sea, although maritime transport is found to generate the largest greenhouse gas emission among transportation means. For maritime activities, the port is considered the key chain in logistics, thus, the transformation of ports into sustainable energy centres has emerged as a major need in the worldwide initiative to decarbonize marine activities. This research provides a comprehensive techno-economic evaluation of a Hybrid Renewable Energy System (HRES) for Thi Nai Port, Vietnam, utilizing HOMER Pro software. The suggested system seeks to eradicate dependence on fossil fuels by including solar photovoltaics, wind turbines, a biogas generator, and sophisticated battery storage, therefore providing operational robustness. Simulation outcomes demonstrate that an ideal configuration, consisting of a 6,175-kW photovoltaic array, a 500-kW biogas generator, and a 2,357-kW converter, results in a net present cost of 44.6 million USD and a levelized cost of energy of 0.394 USD/kWh. Renewable sources constitute 100% of the installed and operational capacity, with yearly carbon dioxide emissions diminished to a modest 1,286 kg. The research verifies that hybrid renewable solutions may provide competitive economic returns, with a payback period of eight to ten years, while delivering substantial environmental advantages. The study portrays Thi Nai Port as a scalable paradigm for green port transformation, offering a repeatable framework for other mid-sized ports in Southeast Asia pursuing sustainable energy solutions.

Fulltext View|Download
Keywords: Green Port; Sustainability; Homer Pro; Techno-economic assessment; Renewable energy; Optimization

Article Metrics:

  1. Aminzadegan, S., Shahriari, M., Mehranfar, F., & Abramović, B. (2022). Factors affecting the emission of pollutants in different types of transportation: A literature review. Energy Reports, 8, 2508–2529. https://doi.org/10.1016/j.egyr.2022.01.161
  2. Antonio Barrozo Budes, F., Valencia Ochoa, G., Obregon, L. G., Arango-Manrique, A., & Ricardo Núñez Álvarez, J. (2020). Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia. Energies, 13(7), 1662. https://doi.org/10.3390/en13071662
  3. Babu, M. K., & Ray, P. (2023). Sensitivity analysis, optimal design, cost and energy efficiency study of a hybrid forecast model using HOMER pro. Journal of Engineering Research, 11(2), 100033. https://doi.org/10.1016/j.jer.2023.100033
  4. Basheer, Y., Waqar, A., Qaisar, S. M., Ahmed, T., Ullah, N., & Alotaibi, S. (2022). Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro. Sustainability, 14(19), 12440. https://doi.org/10.3390/su141912440
  5. Dierauf, T., Growitz, A., Kurtz, S., & Hansen, C. (2013). Weather-Corrected Performance Ratio. NREL Technical Report NREL/TP-5200-57991, 1–16. https://docs.nrel.gov/docs/fy13osti/57991.pdf
  6. Dinh, G. H., Nguyen, H. P., Nguyen, L. C., Le Huu, B. T., Khoa, P. N. D., Van, N. T. T., Tai, L. P., Vi, V. T. T., & Huong, N. X. (2025). A Comprehensive Analysis of Break Bulk Port Efficiency Using an Analytic Network Process Model. JOIV: International Journal on Informatics Visualization, 9(2), 464–481. https://doi.org/10.62527/joiv.9.2.3881
  7. Do, T. N., Burke, P. J., Nguyen, H. N., Overland, I., Suryadi, B., Swandaru, A., & Yurnaidi, Z. (2021). Vietnam’s solar and wind power success: Policy implications for the other ASEAN countries. Energy for Sustainable Development, 65, 1–11. https://doi.org/10.1016/j.esd.2021.09.002
  8. Duc, T. (2024). Japan renewable firm Erex plans 50MW biomass power plant in central Vietnam. The Investor Vafie Magazine
  9. Garg, C. P., Kashav, V., & Wang, X. (2023). Evaluating sustainability factors of green ports in China under fuzzy environment. Environment, Development and Sustainability, 25(8), 7795–7821. https://doi.org/10.1007/s10668-022-02375-7
  10. Giao, N. Van, Sharma, P., Bora, B. J., Bui, T. M. T., Efremov, C., Tran, M. H., Kowalski, J., Osman, S. M., Cao, D. N., & Dong, V. H. (2024). Techno-economic analysis of a hybrid energy system for electrification using an off-grid solar/biogas/battery system employing HOMER: A case study in Vietnam. Process Safety and Environmental Protection, 191, 1353–1367. https://doi.org/10.1016/j.psep.2024.09.046
  11. Gueymard, C. A., & Wilcox, S. M. (2011). Assessment of spatial and temporal variability in the US solar resource from radiometric measurements and predictions from models using ground-based or satellite data. Solar Energy, 85(5), 1068–1084. https://doi.org/10.1016/j.solener.2011.02.030
  12. Ha, S., Jeong, B., Jang, H., Park, C., & Ku, B. (2023). A framework for determining the life cycle GHG emissions of fossil marine fuels in countries reliant on imported energy through maritime transportation: A case study of South Korea. Science of The Total Environment, 897, 165366. https://doi.org/10.1016/j.scitotenv.2023.165366
  13. Hoang, A. T., Foley, A. M., Nižetić, S., Huang, Z., Ong, H. C., Ölçer, A. I., Pham, V. V., & Nguyen, X. P. (2022). Energy-related approach for reduction of CO2 emissions: A critical strategy on the port-to-ship pathway. Journal of Cleaner Production, 355, 131772. https://doi.org/10.1016/j.jclepro.2022.131772
  14. Hoang, A. T., Goldfarb, J. L., Foley, A. M., Lichtfouse, E., Kumar, M., Xiao, L., Ahmed, S. F., Said, Z., Luque, R., Bui, V. G., & Nguyen, X. P. (2022). Production of biochar from crop residues and its application for anaerobic digestion. Bioresource Technology, 363, 127970. https://doi.org/10.1016/j.biortech.2022.127970
  15. Hoang, A. T., Pandey, A., Martinez De Osés, F. J., Chen, W.-H., Said, Z., Ng, K. H., Ağbulut, Ü., Tarełko, W., Ölçer, A. I., & Nguyen, X. P. (2023). Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives. Renewable and Sustainable Energy Reviews, 188, 113790. https://doi.org/10.1016/j.rser.2023.113790
  16. Hoang, A. T., Sandro Nižetić, Olcer, A. I., Ong, H. C., Chen, W.-H., Chong, C. T., Thomas, S., Bandh, S. A., & Nguyen, X. P. (2021). Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy, 154, 112322. https://doi.org/10.1016/j.enpol.2021.112322
  17. Huong, T. T., Shah, I. H., & Park, H.-S. (2021). Decarbonization of Vietnam’s economy: decomposing the drivers for a low-carbon growth. Environmental Science and Pollution Research, 28(1), 518–529. https://doi.org/10.1007/s11356-020-10481-0
  18. IMO. (2021). Fourth IMO GHG Study 2020 Full Report. International Maritime Organisation, 6(11), 524
  19. International Energy Agency. (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. 70. https://www.iea.org/reports/net-zero-by-2050
  20. International Energy Agency. (2022). International Energy Agency (IEA) World Energy Outlook 2022. International Information Administration, 524. https://www.iea.org/reports/world-energy-outlook-2022
  21. Jacoby, H. (2025). The Paris Agreement. https://climate.mit.edu/explainers/paris-agreement
  22. Kaci, K., Merzouk, M., Merzouk, N. K., Missoum, M., El Ganaoui, M., Behar, O., & Djedjig, R. (2023). Design, optimization and economic viability of an industrial low temperature hot water production system in Algeria: A case study. International Journal of Renewable Energy Development, 12(3). https://doi.org/10.14710/Ijred.2023.49759
  23. Khalil, L., Liaquat Bhatti, K., Arslan Iqbal Awan, M., Riaz, M., Khalil, K., & Alwaz, N. (2021). Optimization and designing of hybrid power system using HOMER pro. Materials Today: Proceedings, 47, S110–S115. https://doi.org/10.1016/j.matpr.2020.06.054
  24. Kuo, K.-C., Lu, W.-M., & Le, M.-H. (2020). Exploring the performance and competitiveness of Vietnam port industry using DEA. The Asian Journal of Shipping and Logistics, 36(3), 136–144. https://doi.org/10.1016/j.ajsl.2020.01.002
  25. Le, T. T., Nguyen, H. P., Rudzki, K., Rowiński, L., Bui, V. D., Truong, T. H., Le, H. C., & Pham, N. D. K. (2023). Management Strategy for Seaports Aspiring to Green Logistical Goals of IMO: Technology and Policy Solutions. Polish Maritime Research, 30(2), 165–187. https://doi.org/10.2478/pomr-2023-0031
  26. Le, X.-Q., Vu, V.-H., Hens, L., & Van Heur, B. (2014). Stakeholder perceptions and involvement in the implementation of EMS in ports in Vietnam and Cambodia. Journal of Cleaner Production, 64, 173–193
  27. MOIT, & DEA. (2017). Vietnam Energy Outlook. Energy, 17–82
  28. Moumin, G., Ryssel, M., Zhao, L., Markewitz, P., Sattler, C., Robinius, M., & Stolten, D. (2020). CO2 emission reduction in the cement industry by using a solar calciner. Renewable Energy, 145, 1578–1596. https://doi.org/10.1016/j.renene.2019.07.045
  29. Nguyen, H. H., Bui, V. G., Le, K. B., Nguyen, V. T., & Hoang, A. T. (2025). Economic-environmental analysis of solar-wind-biomass hybrid renewable energy system for hydrogen production: A case study in Vietnam. International Journal of Renewable Energy Development, 14(3), 528–543. https://doi.org/10.61435/ijred.2025.61233
  30. Nguyen, H. P., Nguyen, P. Q. P., Nguyen, D. K. P., Bui, V. D., & Nguyen, D. T. (2023). Application of IoT Technologies in Seaport Management. JOIV : International Journal on Informatics Visualization, 7(1), 228–240. https://doi.org/10.30630/joiv.7.1.1697
  31. Nguyen, H. P., Nguyen, P. Q. P., & Nguyen, T. P. (2022). Green Port Strategies in Developed Coastal Countries as Useful Lessons for the Path of Sustainable Development: A case study in Vietnam. International Journal of Renewable Energy Development, 11(4), 950–962. https://doi.org/10.14710/ijred.2022.46539
  32. Nguyen, M. D., Yeon, K. T., Rudzki, K., Nguyen, H. P., & Pham, N. D. K. (2023). Strategies for developing logistics centers: Technological trends and policy implications. Polish Maritime Research, 30(4), 129–147. https://doi.org/10.2478/pomr-2023-0066
  33. Nguyen Thuy Lan, C., Tran Cam, N., Huynh Cong, C., Pham Anh, D., & Nhu Thi Hoang, Y. (2023). Assessing the livestock raising and waste treatment of small-scale pig farming households in Binh Dinh Province. Science and Technology Development Journal - Science of The Earth & Environment. https://doi.org/10.32508/stdjsee.v7i2.744
  34. Nguyen, V. N., Chung, N., Balaji, G. N., Rudzki, K., & Hoang, A. T. (2025). Internet of things-driven approach integrated with explainable machine learning models for ship fuel consumption prediction. Alexandria Engineering Journal, 118, 664–680. https://doi.org/10.1016/j.aej.2025.01.067
  35. Nguyen, V. N., Rudzki, K., Marek, D., Pham, N. D. K., Pham, M. T., Nguyen, P. Q. P., & Nguyen, X. P. (2023). Understanding fuel saving and clean fuel strategies towards green maritime. Polish Maritime Research, 30(2), 146–164. https://doi.org/10.2478/pomr-2023-0030
  36. Nguyen, X. P., Le, N. D., Pham, V. V., Huynh, T. T., Dong, V. H., & Hoang, A. T. (2025). Mission, challenges, and prospects of renewable energy development in Vietnam. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 47(1), 10367–10379. https://doi.org/10.1080/15567036.2021.1965264
  37. Pham, N. D. K., Dinh, G. H., Pham, H. T., Kozak, J., & Nguyen, H. P. (2023). Role of Green Logistics in the Construction of Sustainable Supply Chains. Polish Maritime Research, 30(3), 191–211. https://doi.org/10.2478/pomr-2023-0052
  38. Rahmat, M. A. A., Abd Hamid, A. S., Lu, Y., Ishak, M. A. A., Suheel, S. Z., Fazlizan, A., & Ibrahim, A. (2022). An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability, 14(20), 13684. https://doi.org/10.3390/su142013684
  39. Roh, S., Thai, V. V., & Wong, Y. D. (2016). Towards Sustainable ASEAN Port Development: Challenges and Opportunities for Vietnamese Ports. The Asian Journal of Shipping and Logistics, 32(2), 107–118. https://doi.org/10.1016/j.ajsl.2016.05.004
  40. Sathish, T., Ağbulut, Ü., George, S. M., Ramesh, K., Saravanan, R., Roberts, K. L., Sharma, P., Asif, M., & Hoang, A. T. (2023). Waste to fuel: Synergetic effect of hybrid nanoparticle usage for the improvement of CI engine characteristics fuelled with waste fish oils. Energy, 275, 127397. https://doi.org/10.1016/j.energy.2023.127397
  41. Sharif, M. B., Gorbanpour, A. H., Ghassemi, H., & He, G. (2023). Investigating the Harbour Basin Tranquillity in the Genaveh Port Development Plan. Polish Maritime Research, 30(1), 145–155. https://doi.org/doi: 10.2478/pomr-2023-0015
  42. Silva, R. D., Le, H. A., & Koch, K. (2016). Feasibility assessment of anaerobic digestion technologies for household wastes in Vietnam. Journal of Vietnamese Environment, 7(1), 1–8. https://doi.org/10.13141/jve.vol7.no1.pp
  43. Singh, A., Baredar, P., & Gupta, B. (2015). Computational Simulation & Optimization of a Solar, Fuel Cell and Biomass Hybrid Energy System Using HOMER Pro Software. Procedia Engineering, 127, 743–750. https://doi.org/10.1016/j.proeng.2015.11.408
  44. Swardika, I. K., Santiary, P. A. W., Purnama, I. B. I., & Suasnawa, I. W. (2020). Development of Green Zone Energy Mapping for Community-based Low Carbon Emissions. International Journal on Advanced Science, Engineering and Information Technology, 10(6), 2472–2477. https://doi.org/10.18517/ijaseit.10.6.12642
  45. The Museum of Underwater Archaeology. (2012). The Port of Thi Nai / Nuoc Man
  46. UNCTAD. (2023). Review of maritime transport 2023: toward a green and just transition. https://doi.org/10.18356/9789213584569c006
  47. UNITED NATIONS. (2019). The Paris Agreement. https://doi.org/10.4324/9789276082569-2
  48. Vakili, S., Ölçer, A. I., Schönborn, A., Ballini, F., & Hoang, A. T. (2022). Energy‐related clean and green framework for shipbuilding community towards zero‐emissions: A strategic analysis from concept to case study. International Journal of Energy Research, 46(14), 20624–20649. https://doi.org/10.1002/er.7649
  49. Vietnam Seaport Association. (n.d.). Thi Nai Port
  50. Vu, V. V., Le, P. T., Do, T. M. T., Nguyen, T. T. H., Tran, N. B. M., Paramasivam, P., Le, T. T., Le, H. C., & Chau, T. H. (2024). An insight into the Application of AI in maritime and Logistics toward Sustainable Transportation. JOIV : International Journal on Informatics Visualization, 8(1), 158. https://doi.org/10.62527/joiv.8.1.2641
  51. Yong, A., & Chun, S. (2023). On the Potential of Solar Energy for Chemical and Metal Manufacturing Plants in Malaysia. International Journal on Advanced Science, Engineering and Information Technology, 13(5), 1898–1904. https://doi.org/10.18517/ijaseit.13.5.19052
  52. Zhang, Z., Song, C., Zhang, J., Chen, Z., Liu, M., Aziz, F., Kurniawan, T. A., & Yap, P.-S. (2024). Digitalization and innovation in green ports: A review of current issues, contributions and the way forward in promoting sustainable ports and maritime logistics. Science of The Total Environment, 912, 169075. https://doi.org/10.1016/j.scitotenv.2023.169075

Last update:

No citation recorded.

Last update: 2025-10-05 04:18:23

No citation recorded.