skip to main content

Synthesis of sodalite-natural dolomite as novel bifunctional catalyst for biodiesel production: Experimental study of performance and emissions on diesel engine

1Department of Mechanical and Industrial Engineering, Politeknik Negeri Madura, Sampang, 69281, Indonesia

2Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

3Department of Mechanical Engineering, Universitas Muhammadiyah Surabaya, 60113, Indonesia

4 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia

View all affiliations
Received: 2 Jun 2025; Revised: 18 Jul 2025; Accepted: 5 Aug 2025; Available online: 18 Aug 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The development of catalysts derived from natural minerals was investigated in this study for biodiesel production due to their high catalytic activity, abundant availability, low production cost, and environmentally friendly. Biodiesel was produced from Calophyllum Inophyllum (CI) oil using bifunctional catalyst synthesized from natural dolomite and sodalite. In addition, an experimental study was conducted to evaluate the performance and emission characteristics of the produced biodiesel in a diesel engine. The natural dolomite catalyst contains a high composition of CaO-MgO, while sodalite, consisting of Si and Al precursors, was synthesized from natural kaolin. The bifunctional catalysts were synthesized via wet impregnation method with varying loadings of natural dolomite (5, 10, 15, 20, and 25 wt%). FTIR, XRD, SEM-EDX, and N2 adsorption-desorption analyses were employed to characterize the physicochemical properties of the catalysts. The optimum biodiesel yield of 94.14 % was obtained at dolomite loading of 25 wt%. Engine performance tests revealed that the B10 fuel blend produced maximum power and torque of 1.252 kW and 69.151 N.m, respectively, at 1250 rpm. While the optimum specific fuel consumption was obtained at 0.0004 Kg.HP/h at 1250 rpm for all fuel blends.The lowest CO emission was recorded for the B40 fuel blend at 414 ppm, while the lowest NO and NOx emissions were observed for the D100 fuel at 88 and 86 ppm, respectively.

Fulltext View|Download
Keywords: Biodiesel; Bifunctional Catalyst; Natural Dolomite; Sodalite; Diesel Engine

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Abdul Hakim Shaah, M., Hossain, M. S., Salem Allafi, F. A., Alsaedi, A., Ismail, N., Ab Kadir, M. O., & Ahmad, M. I. (2021). A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Advances, 11(40), 25018–25037. https://doi.org/10.1039/d1ra04311k
  2. Afsharizadeh, M., & Mohsennia, M. (2021). Novel rare-earth metal oxides-zirconia nanocatalysts for biodiesel production from corn oil and waste cooking oil. Fuel, 304(June), 121350. https://doi.org/10.1016/j.fuel.2021.121350
  3. Aparamarta, H. W., Gunawan, S., Ihsanpuro, S. I., Safawi, I., Bhuana, D. S., Mochtar, A. F., & Yusril Izhar Noer, M. (2022). Optimization and kinetic study of biodiesel production from nyamplung oil with microwave-assisted extraction (MAE) technique. Heliyon, 8(8), e10254. https://doi.org/10.1016/j.heliyon.2022.e10254
  4. Aparamarta, H. W., Hapsari, S., Gunawan, S., Shiena, R. I., Ariandi, A. G., & Ju, Y. H. (2019). The election of edible and non edible crop for biodiesel feedstock in Indonesia with AHP-BCR and GC analysis. Malaysian Journal of Fundamental and Applied Sciences, 15(5), 767–771. https://doi.org/10.11113/mjfas.v15n5.1440
  5. Azhar, B., Gunawan, S., Muharja, M., Avian, C., Satrio, D., & Aparamarta, H. W. (2024). Optimization of microwave-assisted extraction in the purification of triglycerides from non-edible crude Calophyllum inophyllum oil as biodiesel feedstock using artificial intelligence. South African Journal of Chemical Engineering, 47, 312–321. https://doi.org/10.1016/j.sajce.2023.12.001
  6. Bambase, M. E., Almazan, R. A. R., Demafelis, R. B., Sobremisana, M. J., & Dizon, L. S. H. (2021). Biodiesel production from refined coconut oil using hydroxide-impregnated calcium oxide by cosolvent method. Renewable Energy, 163, 571–578. https://doi.org/10.1016/j.renene.2020.08.115
  7. Brahma, S., Nath, B., Basumatary, B., Das, B., Saikia, P., Patir, K., & Basumatary, S. (2022). Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production. Chemical Engineering Journal Advances, 10(January), 100284. https://doi.org/10.1016/j.ceja.2022.100284
  8. Buchori, L., Widayat, W., Norzita, N., Hadiyanto, H., Okvitarini, N. (2024). Preparation of KI/KIO3/Methoxide Kaolin Catalyst and Performance Test of Catalysis in Biodiesel Production. Science and Technology Indonesia, 9 (2), 359 – 370. https://doi.org/10.26554/sti.2024.9.2.359-370
  9. Buyukkaya, E. (2010). Effects of biodiesel on a di diesel engine performance, emission and combustion characteristics. Fuel, 89(10), 3099–3105. https://doi.org/10.1016/j.fuel.2010.05.034
  10. Chen, Y., Zhang, J., Zhang, Z., Zhong, W., Zhao, Z., & Hu, J. (2023). Utilization of renewable biodiesel blends with different proportions for the improvements of performance and emission characteristics of a diesel engine. Heliyon, 9(9), e19196. https://doi.org/10.1016/j.heliyon.2023.e19196
  11. Darwin, Thifal, M., Alwi, M., Murizal, Z., Pratama, A., & Rizal, M. (2023). The synthesis of biodiesel from palm oil and waste cooking oil via electrolysis by various electrodes. Case Studies in Chemical and Environmental Engineering, 8(July), 100512. https://doi.org/10.1016/j.cscee.2023.100512
  12. De Lima, A. L., Mbengue, A., San Gil, R. A. S., Ronconi, C. M., & Mota, C. J. A. (2014). Synthesis of amine-functionalized mesoporous silica basic catalysts for biodiesel production. Catalysis Today, 226, 210–216. https://doi.org/10.1016/j.cattod.2014.01.017
  13. de S. Barros, S., Pessoa Junior, W. A. G., Sá, I. S. C., Takeno, M. L., Nobre, F. X., Pinheiro, W., Manzato, L., Iglauer, S., & de Freitas, F. A. (2020). Pineapple (Ananás comosus) leaves ash as a solid base catalyst for biodiesel synthesis. Bioresource Technology, 312(May), 123569. https://doi.org/10.1016/j.biortech.2020.123569
  14. Ediati, R., Putra Hidayat, A. R., Syukrie, T. D., Zulfa, L. L., Jannah, M., Harmami, H., Fansuri, H., & Ibnu Ali, B. T. (2025). Investigation the adsorption kinetic and isotherm studies of Remazol Red 5B dye on benzoic acid modified Al2O3/UiO-66 composite. In Arabian Journal of Chemistry (Vol. 18, Issue 1). Elsevier B.V. https://doi.org/10.1016/j.arabjc.2024.106078
  15. Emeji, I. C., & Patel, B. (2024). Box-Behnken assisted RSM and ANN modelling for biodiesel production over titanium supported zinc-oxide catalyst. Energy, 308. https://doi.org/10.1016/j.energy.2024.132765
  16. Fauzan, N. A., Tan, E. S., Pua, F. L., & Muthaiyah, G. (2020). Physiochemical properties evaluation of Calophyllum inophyllum biodiesel for gas turbine application. South African Journal of Chemical Engineering, 32, 56–61. https://doi.org/10.1016/j.sajce.2020.02.001
  17. Fiala, K., Thongjarad, A., & Leesing, R. (2024). Valorization of durian peel as a carbon feedstock for a sustainable production of heterogeneous base catalyst, single cell oil and yeast-based biodiesel. Carbon Resources Conversion, 7(3), 100224. https://doi.org/10.1016/j.crcon.2024.100224
  18. Gamboa, D., Herrera, B., Acevedo, J., López, D., & Cacua, K. (2024). Experimental evaluation of a diesel engine using amide-functionalized carbon nanotubes as additives in commercial diesel and palm-oil biodiesel. International Journal of Thermofluids, 22(April). https://doi.org/10.1016/j.ijft.2024.100669
  19. Gomes, J. F. P., Puna, J. F. B., Bordado, J. C. M., Correia, M. J. N., & Dias, A. P. S. (2012). Status of biodiesel production using heterogeneous alkaline catalysts. International Journal of Environmental Studies, 69(4), 635–653. https://doi.org/10.1080/00207233.2012.693286
  20. Hamid, A., Jakfar, A., Romaniyah, S. B., Febriana, I. D., Abdullah, M., Rahmawati, Z., & Prasetyoko, D. (2023). Transesterification of Waste Cooking Oil using CaO Catalyst Derived from Madura Limestone for Biodiesel Production and Its Application in Diesel Engine. Automotive Experiences, 6(1), 80–93. https://doi.org/10.31603/ae.7879
  21. Hamid, A., Nugraha, R. E., Holilah, H., Bahruji, H., & Prasetyoko, D. (2023a). Large intraparticle mesoporosity of hierarchical ZSM-5 synthesized from kaolin using silicalite seed: effect of aging time and temperature. Journal of the Korean Ceramic Society, 60(2), 344–356. https://doi.org/10.1007/s43207-022-00267-0
  22. Hazmi, B., Rashid, U., Moser, B. R., Ab Ghani, M. H., Alharthi, F. A., Han, J., & Yoo, J. (2025). Environmentally sustainable production of biodiesel from low-cost lipid feedstock using a zirconium-based metal-organic framework sulfonated solid catalyst. Green Chemical Engineering. https://doi.org/10.1016/j.gce.2024.10.001
  23. How, H. G., Masjuki, H. H., Kalam, M. A., Teoh, Y. H., & Chuah, H. G. (2018). Effect of Calophyllum Inophyllum biodiesel-diesel blends on combustion, performance, exhaust particulate matter and gaseous emissions in a multi-cylinder diesel engine. Fuel, 227, 154–164. https://doi.org/10.1016/j.fuel.2018.04.075
  24. Hussain, J., Ali, Z. M., Qureshi, K. M., Khawaja, N., & Shah, S. F. A. (2022). Production of Biodiesel from Jatropha Curcas by using Heterogenous Dopped Zinc Oxide. JOURNAL OF NANOSCOPE (JN), 3(2), 173–182. https://doi.org/10.52700/jn.v3i2.78
  25. Jamshaid, M., Masjuki, H. H., Kalam, M. A., Zulkifli, N. W. M., Arslan, A., & Qureshi, A. A. (2022). Experimental investigation of performance, emissions and tribological characteristics of B20 blend from cottonseed and palm oil biodiesels. Energy, 239. https://doi.org/10.1016/j.energy.2021.121894
  26. Kalita, P., Basumatary, B., Saikia, P., Das, B., & Basumatary, S. (2022). Biodiesel as renewable biofuel produced via enzyme-based catalyzed transesterification. Energy Nexus, 6(December 2021), 100087. https://doi.org/10.1016/j.nexus.2022.100087
  27. Lawan, I., Garba, Z. N., Zhou, W., Zhang, M., & Yuan, Z. (2020). Synergies between the microwave reactor and CaO/zeolite catalyst in waste lard biodiesel production. Renewable Energy, 145, 2550–2560. https://doi.org/10.1016/j.renene.2019.08.008
  28. Maneerung, T., Kawi, S., Dai, Y., & Wang, C. H. (2016). Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure. Energy Conversion and Management, 123, 487–497. https://doi.org/10.1016/j.enconman.2016.06.071
  29. Marinković, D. M., Avramović, J. M., Stanković, M. V., Stamenković, O. S., Jovanović, D. M., & Veljković, V. B. (2017). Synthesis and characterization of spherically-shaped CaO/Γ-Al2O3 catalyst and its application in biodiesel production. Energy Conversion and Management, 144, 399–413. https://doi.org/10.1016/j.enconman.2017.04.079
  30. Marwaha, A., Dhir, A., Mahla, S. K., & Mohapatra, S. K. (2018). An overview of solid base heterogeneous catalysts for biodiesel production. Catalysis Reviews - Science and Engineering, 60(4), 594–628. https://doi.org/10.1080/01614940.2018.1494782
  31. Mazaheri, H., Ong, H. C., Amini, Z., Masjuki, H. H., Mofijur, M., Su, C. H., Badruddin, I. A., & Yunus Khan, T. M. (2021). An overview of biodiesel production via calcium oxide based catalysts: Current state and perspective. Energies, 14(13). MDPI AG. https://doi.org/10.3390/en14133950
  32. Mengistu, N. G., Mekonen, M. W., Ayalew, Y. G., Demisie, L. F., & Nega, T. (2024). Experimental investigation on diesel engine performance and emission characteristics using waste cooking oil blended with diesel as biodiesel fuel. Discover Energy, 4(1), 26. https://doi.org/10.1007/s43937-024-00051-7
  33. Mora, J. M. R., Lacson, C. F. Z., Choi, A. E. S., Chung, T.-W., Retumban, J. D., Abarca, R. R., Grisdanurak, N., & de Luna, M. D. G. (2024). Biodiesel production from soybean oil via LiOH-pumice catalytic transesterification and BBD-RSM optimization. Energy Reports, 11(February), 4032–4043. https://doi.org/10.1016/j.egyr.2024.03.050
  34. Nguyen, V. G., Pham, M. T., Le, N. V. L., Le, H. C., Truong, T. H., & Cao, D. N. (2023). A comprehensive review on the use of biodiesel for diesel engines. International Journal of Renewable Energy Development, 12(4), 720–740. https://doi.org/10.14710/ijred.2023.54612
  35. Nisar, J., Razaq, R., Farooq, M., Iqbal, M., Khan, R. A., Sayed, M., Shah, A., & Rahman, I. ur. (2017). Enhanced biodiesel production from Jatropha oil using calcined waste animal bones as catalyst. Renewable Energy, 101, 111–119. https://doi.org/10.1016/j.renene.2016.08.048
  36. Novita, L., Safni, Emriadi, de Freitas, F. A., Fauzia, S., & Zein, R. (2024). Enhanced conversion of used palm cooking oil to biodiesel by a green and recyclable palm kernel shell ash-derived catalyst: Process optimization by response surface methodology. Case Studies in Chemical and Environmental Engineering, 9. https://doi.org/10.1016/j.cscee.2024.100678
  37. Olutoye, M. A., Wong, S. W., Chin, L. H., Amani, H., Asif, M., & Hameed, B. H. (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renewable Energy, 86, 392–398. https://doi.org/10.1016/j.renene.2015.08.016
  38. Pansakdanon, C., Seejandee, P., Kosawatthanakun, S., Deekamwong, K., Prayoonpokarach, S., & Wittayakun, J. (2025). Influence of crystallinity of zeolite NaX as a support for potassium catalyst in transesterification of palm oil. Journal of Physics and Chemistry of Solids, 196. https://doi.org/10.1016/j.jpcs.2024.112389
  39. Pavlović, S. M., Marinković, D. M., Kostić, M. D., Janković-Častvan, I. M., Mojović, L. V., Stanković, M. V., & Veljković, V. B. (2020). A CaO/zeolite-based catalyst obtained from waste chicken eggshell and coal fly ash for biodiesel production. Fuel, 267(September 2019), 117171. https://doi.org/10.1016/j.fuel.2020.117171
  40. Qu, S., Chen, C., Guo, M., Lu, J., Yi, W., Ding, J., & Miao, Z. (2020). Synthesis of MgO/ZSM-5 catalyst and optimization of process parameters for clean production of biodiesel from Spirulina platensis. Journal of Cleaner Production, 276, 123382. https://doi.org/10.1016/j.jclepro.2020.123382
  41. Rabie, A. M., Shaban, M., Abukhadra, M. R., Hosny, R., Ahmed, S. A., & Negm, N. A. (2019). Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil. Journal of Molecular Liquids, 279, 224–231. https://doi.org/10.1016/j.molliq.2019.01.096
  42. Saad, M., Siyo, B., & Alrakkad, H. (2023). Preparation and characterization of biodiesel from waste cooking oils using heterogeneous Catalyst(Cat.TS-7) based on natural zeolite. Heliyon, 9(6), e15836. https://doi.org/10.1016/j.heliyon.2023.e15836
  43. Sari, M. E. F., Suprapto, & Prasetyoko, D. (2018). Direct synthesis of sodalite from kaolin: The influence of alkalinity. Indonesian Journal of Chemistry, 18(4), 607–613. https://doi.org/10.22146/ijc.25191
  44. Shalaby, E. A., & Sh El-Gendy, N. (2012). Two steps alkaline transesterification of waste cooking oil and quality assessment of produced biodiesel. In International Journal of Chemical and Biochemical Sciences, 1. www.iscientific.org/Journal.html
  45. Shalihah, R., Widiarti, N., Yanuar, E., & Prasetyoko, D. (2020). Modified ZnO to Indonesia limestone as heterogeneous catalysts for biodiesel production from Reutealis trisperma oil. Malaysian Journal of Fundamental and Applied Sciences, 16(6), 649–653. https://doi.org/10.11113/mjfas.v16n6.1782
  46. Sun, H., Sun, K., Wang, F., Liu, Y., Ding, L., Xu, W., Sun, Y., & Jiang, J. (2021). Catalytic self-activation of Ca-doped coconut shell for in-situ synthesis of hierarchical porous carbon supported CaO transesterification catalyst. Fuel, 285, 119192. https://doi.org/10.1016/j.fuel.2020.119192
  47. Supamathanon, N., Boonserm, K., Lisnund, S., Chanlek, N., Rungtaweevoranit, B., Khemthong, P., Wittayakun, J., & Osakoo, N. (2021). Development of CaO supported on modified geopolymer catalyst for transesterification of soybean oil to biodiesel. Materials Today Communications, 29, 102822. https://doi.org/10.1016/J.MTCOMM.2021.102822
  48. Szkudlarek, Ł., Chałupka-Śpiewak, K., Maniukiewicz, W., Nowosielska, M., Albińska, J., Szynkowska-Jóźwik, M. I., & Mierczyński, P. (2024). CaO catalysts supported on ZSM-5 zeolite for biodiesel production via transesterification of rapeseed oil. Applied Catalysis O: Open, 194, 206999. https://doi.org/10.1016/j.apcato.2024.206999
  49. Talebi, M., Larimi, A., Khorasheh, F., & Borhani, T. N. (2024). Biodiesel production using heterogeneous catalyst derived from natural calcite stone: Study of the effect of Mg–Zr doping and reaction conditions. Sustainable Chemistry and Pharmacy, 39. https://doi.org/10.1016/j.scp.2024.101559
  50. Tang, Z. E., Lim, S., Pang, Y. L., Ong, H. C., & Lee, K. T. (2018). Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review. In Renewable and Sustainable Energy Reviews, 92, 235–253). https://doi.org/10.1016/j.rser.2018.04.056
  51. Ulfa, M., Masykur, A., Nofitasari, A. F., Sholeha, N. A., Suprapto, S., Bahruji, H., & Prasetyoko, D. (2022). Controlling the Size and Porosity of Sodalite Nanoparticles from Indonesian Kaolin for Pb2+ Removal. Materials, 15(8). https://doi.org/10.3390/ma15082745
  52. Wahyuni, T., Prasetyoko, D., Suprapto, S., Qoniah, I., Bahruji, H., Dawam, A., Triwahyono, S., & Jalil, A. A. (2019). Direct synthesis of sodalite from Indonesian kaolin for adsorption of Pb2+ solution, kinetics, and isotherm approach. Bulletin of Chemical Reaction Engineering & Catalysis, 14(3), 502–512. https://doi.org/10.9767/bcrec.14.3.2939.502-512
  53. Weldeslase, M. G., Benti, N. E., Desta, M. A., & Mekonnen, Y. S. (2023). Maximizing biodiesel production from waste cooking oil with lime-based zinc-doped CaO using response surface methodology. Scientific Reports, 13(1), 1–14. https://doi.org/10.1038/s41598-023-30961-w
  54. Widiarti, N., Bahruji, H., Holilah, H., Ni’mah, Y. L., Ediati, R., Santoso, E., Jalil, A. A., Hamid, A., & Prasetyoko, D. (2021). Upgrading catalytic activity of NiO/CaO/MgO from natural limestone as catalysts for transesterification of coconut oil to biodiesel. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-01373-5
  55. Widayat, W.,Hantoro, S., Setyojati, P.W., , Shihab, D., Buchori, L., Hadiyanto, H., Nurushofa, F.A. (2024). Preparation CaO/MgO/Fe3O4 magnetite catalyst and catalytic test for biodiesel production. Results in Engineering, 22, art. no. 102202, https://doi.org/10.1016/j.rineng.2024.102202
  56. Widiarti, N., Holilah, H., Bahruji, H., Nugraha, R. E., Suprapto, S., Ni’mah, Y. L., & Prasetyoko, D. (2024). Coprecipitation and hydrothermal synthesis of CaO from dolomite in the presence of Sapindus rarak extract for biodiesel production: catalysts characterization and optimization. RSC Advances, 14(32), 23332–23340. https://doi.org/10.1039/d4ra03489a
  57. Yang, J., Caldwell, C., Corscadden, K., He, Q. S., & Li, J. (2016). An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Industrial Crops and Products, 81, 162–168. https://doi.org/10.1016/j.indcrop.2015.11.073
  58. Yusuff, A. S., Gbadamosi, A. O., & Atray, N. (2022). Development of a zeolite supported CaO derived from chicken eggshell as active base catalyst for used cooking oil biodiesel production. Renewable Energy, 197, 1151–1162. https://doi.org/10.1016/j.renene.2022.08.032

Last update:

No citation recorded.

Last update: 2025-10-20 06:00:21

No citation recorded.