skip to main content

Data-driven reconstruction of solar spectrum in a class A+ LED solar simulator

1Department of Electrical Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi, Nonthaburi, Thailand

2Department of Mechatronics Engineering, Faculty of Engineering and Architecture, Rajamangala University of Technology Suvarnabhumi, Nonthaburi, Thailand

3Department of Electrical Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep, Bangkok, Thailand

4 Department of Electrical Engineering, Faculty of Engineering, Bangkokthonburi University, Bangkok, Thailand

View all affiliations
Received: 22 Jun 2025; Revised: 17 Aug 2025; Accepted: 6 Sep 2025; Available online: 10 Sep 2025; Published: 1 Nov 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

High‑spectral‑fidelity solar simulators are indispensable for rigorous photovoltaic characterization, as they provide stable, reproducible irradiance that closely conforms to the AM 1.5G reference spectrum. The latest IEC 60904‑9:2020 standard imposes stringent limits on spectral mismatch (SM), coverage, and deviation, driving the need for innovative design strategies. This work introduces a data‑driven LED spectrum reconstruction methodology to engineer a Class A+ LED Solar Simulator (LSS) spectrum. Manufacturer‑provided spectral profiles spanning 300–1200 nm were digitized using a precision plot‑digitization tool and calibrated via a Spectral Mismatch Calculator to ensure wavelength alignment and intensity normalization. Custom numerical optimization algorithms then refined these datasets to compute the optimal mixing ratios of broadband phosphor‑converted white LEDs (400–900 nm), combined with targeted UV, visible, and NIR emitters. The finalized 13‑LED configuration achieved a Spectral Coverage (SPC) of 99.52% and a Spectral Deviation (SPD) of 17.42%, exceeding the Class A+ acceptance criteria while employing a minimal component count. Although minor uncertainties may originate from the digitization process, such as image resolution and axis calibration, these can be effectively mitigated by integrating direct numerical spectra supplied by manufacturers. This approach establishes an efficient, high‑accuracy framework for LSS spectral design. Future work will advance to hardware prototyping and empirical validation of the simulator’s irradiance spectrum under real‑world operating conditions, fully compliant with IEC 60904‑9:2020.

Fulltext View|Download
Keywords: Data-Driven Reconstruction, LED Solar Simulator, Spectral Coverage, Spectral Deviation, LED Spectral Data

Article Metrics:

  1. Al-Ahmad, A. Y., Clark, D., Holdsworth, J. L., Vaughan, B., Belcher, W. J., & Dastoor, P. C. (2022). An Economic LED Solar Simulator Design, IEEE Journal of Photovoltaics, 12(2), 521-525; https://doi.org/10.1109/JPHOTOV.2022.3143460
  2. ASTM International. 2015 ASTM E927-10 (2015). Pennsylvania: ASTM International. Standard Specification for Solar Simulation for Photovoltaic Testing
  3. Automeris.io. WebPlotDigitizer. https://automeris.io/ accessed on 1 May 2025
  4. Basore, E.T., Wu, H., Xiao, W., Zheng, G., Liu, X. & Qiu, J. (2021) High-power broadband NIR LEDs enabled by highly efcient blue-to-NIR conversion. Advanced Optical Materials, 9(7), 2001660, https://doi.org/10.1002/adom.202001660
  5. Chojniak, D., Schachtner, M., Reichmuth, S. K., Bett, A. J., Rauer, M., Hohl-Ebinger, J., Schmid, A., Siefer, G. & Glunz, S. W. (2024). A Precise Method for the Spectral Adjustment of LED and Multi-Light Source Solar Simulators. Progress in Photovoltaics: Research and Applications, 32(6) 372–389, https://doi.org/10.1002/pip.3776
  6. Cortés-Severino, R., Cárdenas-Bravo, C., Barraza, R., Sánchez-Squella, A., Lefort, P. V. & Castillo-Burns, F. (2021). Optimal design and experimental test of a solar simulator for solar photovoltaic modules. Energy Science & Engineering, 9(2), 2514-2528, https://doi.org/10.1002/ese3.985
  7. Cruz, G. P. C.; Barreto, G. L.; Gómez-Malagón, L. A.; de Lima, R. A.; & Vital, C. V. P. (2025) Solar Simulator Prototype With Halogen and Light-Emitting Diode Sources. J. Sol. Energy Eng., 147(4), 041005, https://doi.org/10.1115/1.4067972
  8. EFFILUX. Hyperspectral lighting systems. https://www.effilux.com/en/products/hyperspectral accessed on 4 May 2025
  9. EPIGAP OSA Photonics. IR LED chips. https://www.epigap-osa.com/led-chips/ir-led-chips/ accessed on 4 May 2025
  10. Esen, V., Sağlam, Ş., & Oral, B. (2017). Light sources of solar simulators for photovoltaic devices: A review. Renewable and Sustainable Energy Reviews, 77, 1240-1250. https://doi.org/10.1016/j.rser.2017.03.062
  11. Ge, C., Fang, Q., Lin, H. & Hu, H. (2021). Review on Blue Perovskite Light-Emitting Diodes: Recent Advances and Future Prospects. Frontiers in Materials, 8, 635025, https://doi.org/10.3389/fmats.2021.635025
  12. Hasan, M. M., Jones, E., & Rahman, F. (2024). Stable solvatochromic light-emitting diodes and their potential for color temperature adjustment of white LEDs. Optical Materials, 152, 115490, https://doi.org/10.1016/j.optmat.2024.115490
  13. Hou, D., Lin, H., Zhang, Y., Lin, Z., Li, H., Song, J., & Huang, R. (2023). A novel extra-broadband visible-NIR phosphor doped with Ce3+ and Cr3+ towards multifunctional advanced applications. Ceramics International, 49(7), 10692-10701; https://doi.org/10.1016/j.ceramint.2022.11.259
  14. International Electrotechnical Commission (2020) IEC 60904-9: 2020. Photovoltaic Devices - Part 9: Classification of Solar Simulator Characteristics
  15. International Electrotechnical Commission. (2007). IEC 60904-9: 2007. Photovoltaic Devices - Part 9: Solar simulator performance requirements
  16. Islam, N. U., Usman, M., Rasheed, S., & Jamil, T. (2021). Review—White Light-Emitting Diodes: Past, Present, and Future. ECS Journal of Solid State Science and Technology, 10(10), 106004, https://doi.org/10.1149/2162-8777/ac26d8
  17. Katzin, D., Leo, Marcelis, F.M., & Mourik, S. V. (2021). Energy savings in greenhouses by transition from high-pressure sodium to LED lighting. Applied Energy, 281, 116019, https://doi.org/10.1016/j.apenergy.2020.116019
  18. King, P., Merlière, E., Gosteli, C., Coto, I. M., Reed, J., Tucker, M., Karim, M. & Almond, H. (2023). Design of a low-cost high-flux solar simulator. AIP Conference Proceeding, 2815, 080003, https://doi.org/10.1063/5.0148835
  19. Leary, G., Switzer, G., Kuntz, G. & Kaiser, T. (2016). Comparison of xenon lamp-based and led-based solar simulators, IEEE Photovoltaic Specialists Conference (PVSC), Portland, OR, US, 21 Nov 2016, 3062–3067, https://doi.org/10.1109/PVSC.2016.7750227
  20. Linden, K. J., Neal, W. R., & Serreze, H. B. (2014). Adjustable spectrum LED solar simulator. Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII, 9003, 109–117; https://doi.org/10.1117/12.2035649
  21. López-Fraguas, E., Sánchez-Pena, J. M., & Vergaz, R. (2019). A Low-Cost LED-Based Solar Simulator, IEEE Transactions on Instrumentation and Measurement, 68(12), 4913-4923; https://doi.org/10.1109/TIM.2019.2899513
  22. Marubeni America Corporation. 1150 nm IR LED datasheet (SMT1150D). https://tech-led.com/wp-content/uploads/2021/07/SMT1150D.pdf accessed on 1 May 2025
  23. Parupudi, R. V., Singh, H., & Kolokotroni, M. (2019). Sun Simulator for Indoor Performance assessment of Solar Photovoltaic Cells. Energy Procedia, 161, 376-384, https://doi.org/10.1016/j.egypro.2019.02.102
  24. PV Lighthouse. Spectral mismatch calculator. https://www2.pvlighthouse.com.au/calculators/spectral%20mismatch%20calculator/spectral%20mismatch%20calculator.aspx accessed on 5 May 2025
  25. Sena, S., Kumari, S., Kumar, V. & Husen, A. (2024). Light emitting diode (LED) lights for the improvement of plant performance and production: A comprehensive review. Current Research in Biotechnology, 7, 100184, https://doi.org/10.1016/j.crbiot.2024.100184
  26. Sevilla-Camacho, P.Y., Robles-Ocampo, J.B., Rodríguez-Resendíz, J., Cruz-Arreola, D. S., Sánchez-Hernández, F. & Solís-Cisneros, H.I. (2024). Evaluation of the design features and components for a large-scale solar simulator for PV module testing, Solar Energy, 279, 112836, https://doi.org/10.1016/j.solener.2024.112836
  27. Song, J. Y., Zeng, R. M., Xu, D. Y., Wang, Y., Ding, Z., & Yang, C. (2021). A compact AAA-compatible multispectral solar simulator based on spherical cap chamber. Solar Energy, 220(15), 1053-1064, https://doi.org/10.1016/j.solener.2021.03.074
  28. Sun, C., Jin, Z., Song, Y., Chen, Y., Xiong, D., Lan, K., Huang, Y., & Zhang, M. ( (2022). LED-based solar simulator for terrestrial solar spectra and orientations, Solar Energy, vol. 233, 96-110; https://doi.org/10.1016/j.solener.2022.01.001
  29. Sun, Y., Shang, M., Wang, Y., Zhu, Y., Xing, X., Dang, P., & Lin, J. (2023). The ultra-wideband near-infrared luminescence properties and applications of K2SrGe8O18:Cr3+ phosphor. Ceramics International, 49, 32619-32627, https://doi.org/10.1016/j.ceramint.2023.07.229
  30. Tavakoli, M., Jahantigh, F., & Zarookian, H. (2021). Adjustable high-power-LED solar simulator with extended spectrum in UV region, Solar Energy, 220, 1130-1136; https://doi.org/10.1016/j.solener.2020.05.081
  31. Thorlabs Inc. LEDs for scientific applications. https://www.thorlabs.com/navigation.cfm?guide_id=2101 accessed on 1 May 2025
  32. Turek, M., Sporleder, K. & Luka, T. (2019). Spectral characterization of solar cells and modules using LED-based solar simulators, Solar Energy Materials and Solar Cells, 194, 142-147, https://doi.org/10.1016/j.solmat.2019.02.007
  33. Vosylius, Ž., Antonovič, D., Novičkovas, A., Gaubas, E., & Tamošiūnas, V. (2023). Rational selection of light sources for LED-based solar simulators. Solar Energy, 265, 112064. https://doi.org/10.1016/j.solener.2023.112064
  34. Vosylius, Ž., Novičkovas, A., & Tamošiūnas, V. (2023). Optimization of LED-Based Solar Simulators for Cadmium Telluride and Microcrystalline Silicon Solar Cells. Energies, 16(15), 5741; https://doi.org/10.3390/en16155741
  35. Vosylius, Ž., Novičkovas, A., Laurinavičius, K. & Tamošiūnas, V. (2022). Rational Design of Scalable Solar Simulators With Arrays of Light-Emitting Diodes and Double Reflectors. IEEE Journal of Photovoltaics, 12(2), 512-520, https://doi.org/10.1109/JPHOTOV.2021.3136783
  36. Wang, C.; Wang, X.; Zhou, Y.; Zhang, S.; Li, C.; Hu, D.; Xu, L.; Jiao, H. (2019). An Ultra-Broadband Near-Infrared Cr3+-Activated Gallogermanate Mg3Ga2GeO8 Phosphor as Light Sources for Food Analysis. ACS Applied Electronic Materials, 1(6), 1046-1053, https://doi.org/10.1021/acsaelm.9b00219
  37. Wang, X., Feng, X., Molokeev, M. S., Zheng, H., Wang, Q., Xu, C., & Li, J. G. (2023). Modulation of Bi3+ luminescence from broadband green to broadband deep red in Lu2WO6 by Gd3+ doping and its applications in high color rendering index white LED and near-infrared LED. Dalton Transactions, 52(9), 2619-2630; https://doi.org/10.1039/D2DT03751C
  38. Watjanatepin, N., Boonmee, C., Kaisookkanatorn, P., Sritanauthaikorn, P., Wannakam, K., & Thongkullaphat, S. (2023). Light Sources and Irradiance Spectrum of LED solar simulator for photovoltaic devices: A Review. International Journal of Renewable Energy Research (IJRER), 13(1), 192-207. https://doi.org/10.20508/ijrer.v13i1.13741.g8675
  39. Watjanatepin, N., Wannakam, K., Kiatsookkanatorn, P., Boonmee, C., & Sritanauthaikorn, P. (2023). Improved spectral mismatch and performance of a phosphorconverted light-emitting diode solar simulator. International Journal of Electrical & Computer Engineering(IJECE), 13(5), 4931-4941; http://doi.org/10.11591/ijece.v13i5.pp4931-4941
  40. Yang, J., Zhang, G., Zhao, B., Yang, D., Zhang, K., Zhang, Y., Zhang, J., Ren, Z., Sun, J., Wang, L., Mo, X., Ren, T., Ren, D., Peng, Z., Yang, S., & Lv, J. (2025). Solar Spectrum Simulation Algorithms Considering AM0G and AM1.5G. Sensors, 25(5), 1406, https://doi.org/10.3390/s25051406
  41. Zhang, J., Fang, L., Wu, H., Zhang, L., Wu, H., Pan, G., & Zhang, J. (2024). Ce3+ and Cr3+ co-activated ultra-wide visible-NIR garnet phosphor for phosphor-converted light emitting diode. Materials Research Bulletin, 177, 112870; https://doi.org/10.1016/j.materresbull.2024.112870

Last update:

No citation recorded.

Last update: 2025-10-22 18:15:21

No citation recorded.