skip to main content

Unlocking the power of the wind: Innovations in smart hybrid vertical axis wind turbines

1Functional Control Systems, Shibaura Institute of Technology, Japan

2Department of Mechatronics and Artificial Intelligence, Universitas Pendidikan Indonesia, Indonesia

3Department of Electrical Engineering, Shibaura Institute of Technology, Japan

4 Department of Electrical Engineering, Salesian Polytechnic, Japan

View all affiliations
Received: 22 May 2024; Revised: 27 Jul 2024; Accepted: 10 Aug 2024; Available online: 25 Aug 2024; Published: 1 Sep 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
As global concerns about CO2 emissions grow, the development of green energy sources like wind power has become increasingly important. Two significant strengths of vertical-axis wind turbines relative to horizontal-axis models are their capacity to initiate rotation under minimal wind conditions and their versatility to operate effectively regardless of wind direction. This paper explores the innovation of smart hybrid vertical axis wind turbines, which combine drag and lift principles for enhanced performance with a focus on rotor switching mechanisms to optimize performance across varying wind conditions. The methodology involves experimental investigations using a small hybrid Savonius-Darrieus model, with 14cm height and 10cm diameter. The data indicates that the optimal rotor switching occurs at a tip speed ratio of 1.7. The turbine is designed to operate in hybrid mode at tip speed ratios below 1.7 and switch to single Darrieus mode at higher tip speed ratios. Performance evaluation metrics include tip speed ratio, moment coefficient, and power coefficient. Results indicate that the smart hybrid model exhibits superior performance compared to traditional hybrid and single Darrieus configurations. Through empirical studies and computational analysis, the Smart Hybrid model shows significant enhancements, with a 175% increase in initial torque compared to single Darrieus model and a 12.12% improvement in maximum power coefficient compared to traditional hybrid configurations.
Fulltext View|Download
Keywords: Hybrid; moment coefficient; power coefficient; rotor switching; tip speed ratio; vertical axis wind turbine

Article Metrics:

  1. Aboufazeli, N., Tari, P. H., Gavagsaz-ghoachani, R., & Zandi, M. (2019). Effect of solidity on the performance of micro-scale darrieus wind turbines: An Experimental Study. 2019 Iranian Conference on Renewable Energy & Distributed Generation (ICREDG), 1–5. https://doi.org/10.1109/ICREDG47187.2019.190154
  2. Ahmad, M., Shahzad, A., Akram, F., Ahmad, F., & Shah, S. (2022). Design optimization of Double-Darrieus hybrid vertical axis wind turbine. Ocean Engineering, 254, 111171. https://doi.org/10.1016/j.oceaneng.2022.111171
  3. Ahmad, M., Shahzad, A., & Qadri, M. N. M. (2023). An overview of aerodynamic performance analysis of vertical axis wind turbines. Energy & Environment, 34(7), 2815–2857. https://doi.org/10.1177/0958305X221121281
  4. Ahmad, M., & Zafar, M. H. (2023). Enhancing vertical axis wind turbine efficiency through leading edge tubercles: A multifaceted analysis. Ocean Engineering, 288, 116026. https://doi.org/10.1016/j.oceaneng.2023.116026
  5. Ali, N. M., K, A. H. A., & Aljabair, S. (2020). The effect of darrieus and savonius wind turbines position on the performance of the hybrid wind turbine at low wind speed. Engineering Archive, 11(2), 56-72. https://doi.org/10.31224/osf.io/grbmv
  6. Al-Rawajfeh, M. A., & Gomaa, M. R. (2023). Comparison between horizontal and vertical axis wind turbine. International Journal of Applied Power Engineering (IJAPE), 12(1), Article 1. https://doi.org/10.11591/ijape.v12.i1.pp13-23
  7. Amjith, L., & Bavanish, B. (2022). A review on biomass and wind as renewable energy for sustainable environment. Chemosphere, 293, 133579. https://doi.org/10.1016/j.chemosphere.2022.133579
  8. Ang, T.-Z., Salem, M., Kamarol, M., Das, H. S., Nazari, M. A., & Prabaharan, N. (2022). A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews, 43, 100939. https://doi.org/10.1016/j.esr.2022.100939
  9. Castillo, O. C., Andrade, V. R., Rivas, J. J. R., & González, R. O. (2023). Comparison of Power Coefficients in Wind Turbines Considering the Tip Speed Ratio and Blade Pitch Angle. Energies, 16(6), Article 6. https://doi.org/10.3390/en16062774
  10. Cazzaro, D., Bedon, G., & Pisinger, D. (2023). Vertical Axis Wind Turbine Layout Optimization. Energies, 16(6), Article 6. https://doi.org/10.3390/en16062697
  11. Cullen, J. (2013). Measuring the Environmental Benefits of Wind-Generated Electricity. American Economic Journal: Economic Policy, 5(4), 107–133
  12. Dewan, A., Gautam, A., & Goyal, R. (2021). Savonius wind turbines: A review of recent advances in design and performance enhancements. Materials Today: Proceedings, 47, 2976–2983. https://doi.org/10.1016/j.matpr.2021.05.205
  13. EI Kenawy, A. M., Al‐Awadhi, T., Abdullah, M., Jawarneh, R., & Abulibdeh, A. (2023). A Preliminary Assessment of Global CO2: Spatial Patterns, Temporal Trends, and Policy Implications. Global Challenges, 7(12), 2300184. https://doi.org/10.1002/gch2.202300184
  14. El-Zafry, A., Cairo, Omar, E., El-Hameed, A., Saffaa, M., Hassan, M., & Shaheen, M. (2019). A Review On The Types Of Vertical Axis Wind Turbines And The Methods Of Their Performance Study. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 6(9), 10633–10643
  15. Fazylova, A., Tultayev, B., Iliev, T., Stoyanov, I., & Beloev, I. (2023a). Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine. Energies, 16(13), Article 13. https://doi.org/10.3390/en16135202
  16. Fazylova, A., Tultayev, B., Iliev, T., Stoyanov, I., & Beloev, I. (2023b). Development of a Control Unit for the Angle of Attack of a Vertically Axial Wind Turbine. Energies, 16(13), Article 13. https://doi.org/10.3390/en16135202
  17. Gangopadhyay, A., Seshadri, A. K., Sparks, N. J., & Toumi, R. (2022). The role of wind-solar hybrid plants in mitigating renewable energy-droughts. Renewable Energy, 194, 926–937. https://doi.org/10.1016/j.renene.2022.05.122
  18. Ghiasi, P., Najafi, G., Ghobadian, B., & Jafari, A. (2021). Analytical and Numerical Solution for H-type Darrieus Wind Turbine Performance at the Tip Speed Ratio of Below One. International Journal of Renewable Energy Development, 10(2), 269–281. https://doi.org/10.14710/ijred.2021.33169
  19. Hand, B., Kelly, G., & Cashman, A. (2021). Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review. Renewable and Sustainable Energy Reviews, 139, 110699. https://doi.org/10.1016/j.rser.2020.110699
  20. Hassan, Q., Algburi, S., Sameen, A. Z., Al-Musawi, T. J., Al-Jiboory, A. K., Salman, H. M., Ali, B. M., & Jaszczur, M. (2024). A comprehensive review of international renewable energy growth. Energy and Built Environment. https://doi.org/10.1016/j.enbenv.2023.12.002
  21. Hosseini, A., & Goudarzi, N. (2018b, October 4). CFD and Control Analysis of a Smart Hybrid Vertical Axis Wind Turbine. ASME 2018 Power Conference collocated with the ASME 2018 12th International Conference on Energy Sustainability and the ASME 2018 Nuclear Forum. https://doi.org/10.1115/POWER2018-7488
  22. Irawan, E. N., Sitompul, S., Yamashita, K.-I., & Fujita, G. (2023). The Effect of Rotor Radius Ratio on The Performance of Hybrid Vertical Axis Wind Turbine Savonius-Darrieus NREL S809. Journal of Energy and Power Technology, 5(1), Article 1. https://doi.org/10.21926/jept.2301001
  23. Jung, C., & Schindler, D. (2019). The role of air density in wind energy assessment – A case study from Germany. Energy, 171, 385–392. https://doi.org/10.1016/j.energy.2019.01.041
  24. Kamada, Y., Maeda, T., Naito, K., Ouchi, Y., & Kozawa, M. (2008). Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine. Journal of Fluid Science and Technology, 3(3), 335–343. https://doi.org/10.1299/jfst.3.335
  25. Kumara, E. A. D., Hettiarachchi, N., & Jayathilake, R. (2017). Review Paper: Overview of the Vertical Axis Wind Turbines. International Journal of Scientific Research and Innovative Technology, 4, 2313–3759
  26. Lipiao, J. A. C., Divina, N. M. M., Santiago, R. V. M., & Hortinela, C. C. (2022). Hybrid J-Type Darrieus and Savonius Vertical Axis Wind Turbine Capable of Harvesting Roadside Wind Energy. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA), 1–6. https://doi.org/10.1109/ICRERA55966.2022.9922907
  27. Liu, Z., Deng, Z., Davis, S., & Ciais, P. (2023). Monitoring global carbon emissions in 2022. Nature Reviews Earth & Environment, 4(4), 205–206. https://doi.org/10.1038/s43017-023-00406-z
  28. Lorimer, W. L., & Lieu, D. K. (1999). Method for measuring and characterizing core loss in a motor. IEEE Transactions on Magnetics, 35(4), 2146–2151. https://doi.org/10.1109/20.774185
  29. MacEachern, C., & Yıldız, İ. (2018). 1.16 Wind Energy. In I. Dincer (Ed.), Comprehensive Energy Systems (pp. 665–701). Elsevier. https://doi.org/10.1016/B978-0-12-809597-3.00118-8
  30. Matsui, T., Fukui, T., & Morinishi, K. (2020). Computational fluid dynamics on a newly developed Savonius rotor by adding sub-buckets for increase of the tip speed ratio to generate higher output power coefficient. Journal of Fluid Science and Technology, 15(2), JFST0009–JFST0009. https://doi.org/10.1299/jfst.2020jfst0009
  31. Micallef, D., & Van Bussel, G. (2018). A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges. Energies, 11(9), Article 9. https://doi.org/10.3390/en11092204
  32. Modi, F. N., & Gilke, N. R. (2018). Computational Analysis of Various Airfoil Profile on the Performance of H-Darrieus Wind Turbine. 2018 IEEE International Conference on System, Computation, Automation and Networking (Icscan), 1–5. 2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN). https://doi.org/10.1109/ICSCAN.2018.8541245
  33. Mrigua, K., Zemamou, M., & Aggour, M. (2022). Numerical Investigation of a New Modified Savonius Wind Turbines. International Journal of Renewable Energy Development, 11(4), 1113–1123. https://doi.org/10.14710/ijred.2022.45799
  34. Preecha, P., & Dejvises, J. (2007). The power losses calculation technique of electrical machines using the heat transfer theory. 2007 International Power Engineering Conference (IPEC 2007), 297–301. https://ieeexplore.ieee.org/document/4510045
  35. Rahman, A., Farrok, O., & Haque, M. M. (2022). Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161, 112279. https://doi.org/10.1016/j.rser.2022.112279
  36. Rezaeiha, A., Pereira, R., & Kotsonis, M. (2017). Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large Horizontal Axis Wind turbine. Renewable Energy, 114, 904–916. https://doi.org/10.1016/j.renene.2017.07.101
  37. Ritchie, H., Roser, M., & Rosado, P. (2024). Renewable Energy. Our World in Data. https://ourworldindata.org/renewable-energy
  38. Rizk, M., & Nasr, K. (2023). Computational fluid dynamics investigations over conventional and modified Savonius wind turbines. Heliyon, 9(6), e16876. https://doi.org/10.1016/j.heliyon.2023.e16876
  39. Rudrapal, D., & Acharya, S. (2023). Characterization of a novel lift-drag-driven air-activated hybrid vertical axis wind turbine. Sustainable Energy Technologies and Assessments, 59, 103415. https://doi.org/10.1016/j.seta.2023.103415
  40. Rus, T., Rus, L. F., Ilutiu-Varvara, D. A., Mare, R., Abrudan, A., & Domnita, F. (2018). Experimental Investigation on the Influence of Overlap Ratio on Savonius Turbines Performance. International Journal of Renewable Energy Research (IJRER), 8(3), Article 3
  41. Sefidgar, Z., Ahmadi Joneidi, A., & Arabkoohsar, A. (2023). A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines. Sustainability, 15(5), Article 5. https://doi.org/10.3390/su15054679
  42. Sun, X., Chen, Y., Cao, Y., Wu, G., Zheng, Z., & Huang, D. (2016). Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine. Advances in Mechanical Engineering, 8(1), 1687814016629349. https://doi.org/10.1177/1687814016629349
  43. Tripathi, A., Das, P., Aggarwal, T., & Sahil. (2022). Efficiency enhancement of a hybrid Vertical axis wind turbine by utilizing Optimum parameters. Materials Today: Proceedings, 62, 3582–3588. https://doi.org/10.1016/j.matpr.2022.04.406
  44. Zemamou, M., Aggour, M., & Toumi, A. (2017). Review of savonius wind turbine design and performance. Energy Procedia, 141, 383–388. https://doi.org/10.1016/j.egypro.2017.11.047

Last update:

No citation recorded.

Last update: 2024-10-11 20:04:58

No citation recorded.