skip to main content

Optimised PCBM electron transport layer in inverted lead-free Cs3Bi2I9 flexible perovskite solar cells via FIRA

1Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia

2Department of Science Laboratory Technology, Federal Polytechnic Damaturu, Yobe State, Nigeria

3SPECIFIC IKC, Materials Research Centre, College of Engineering, Swansea University Bay Campus, Fabian Way Institution, Swansea SA1 8EN, United Kingdom

Received: 7 Sep 2024; Revised: 18 Mar 2025; Accepted: 27 Apr 2025; Available online: 6 May 2025; Published: 1 Jul 2025.
Editor(s): Peter Nai Yuh Yek
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Flexible perovskite solar cells (FPSCs) offer significant versatility for portable and wearable technologies owing to their light weight, easy fabrication, low cost, and bendable properties. However, the commercialization of FPSCs faces challenges, particularly in terms of electron extraction efficiency and charge recombination, which impact device stability. Traditional high-temperature annealing methods are impractical for FPSCs due to their high energy consumption and environmental concerns. This study introduces a novel approach using flash infrared annealing (FIRA) to optimize a [6,6]-phenyl C61 butyric acid methyl ester (PCBM) electron transport layer (ETL) for lead-free cesium bismuth iodide (Cs₃Bi₂I₉) FPSC fabrication. The optimal FIRA conditions, 500 watts of power, PCBM concentration of 0.135 mol/L, and a 2-second annealing time were determined to enhance electron extraction, reduce charge recombination, and improve the overall device efficiency. Characterisation techniques, including UV-vis spectroscopy, photoluminescence, X-ray diffraction (XRD), and scanning electron microscopy (SEM), confirmed these optimisations. The optimised device achieved a power conversion efficiency (PCE) of 1.08%. By optimising the PCBM ETL FIRA, the PCE of lead-free Cs₃Bi₂I₉ FPSC was enhanced from 0.10% to 1.08%, representing a good improvement, along with a significant enhancement in electron extraction. These findings highlight the potential of optimised PCBM layers to improve the performance of FPSCs and contribute to their commercial viability.

Fulltext View|Download
Keywords: Electron transport layer; PCBM; Flexible perovskite solar cell; Flash Infrared Annealing
Funding: the Universiti Kebangsaan Malaysia Research Grant under the Mimos project (RS-2021-003)

Article Metrics:

  1. Aftab, S., Hussain, S., Kabir, F., Aslam, M., Rajpar, A. H., & Al-Sehemi, A. G. (2024). Advances in flexible perovskite solar cells: A comprehensive review. Nano Energy, 120. https://doi.org/10.1016/j.nanoen.2023.109112
  2. Bag, A., Radhakrishnan, R., Nekovei, R., & Jeyakumar, R. (2020). Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Solar Energy, 196, 177–182. https://doi.org/10.1016/j.solener.2019.12.014
  3. Bai, F., Hu, Y., Hu, Y., Qiu, T., Miao, X., & Zhang, S. (2018). Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Solar Energy Materials and Solar Cells, 184, 15–21. https://doi.org/10.1016/j.solmat.2018.04.032
  4. Bi, Z., Zhang, S., Thandapani, M., Zhu, Y., Zheng, Y., Liem, N. Q., Xiao, X., Xu, G., Guerrero, A., & Xu, X. (2021). High Shunt Resistance SnO2-PbO Electron Transport Layer for Perovskite Solar Cells Used in Low Lighting Applications. Advanced Sustainable Systems, 5(11). https://doi.org/10.1002/adsu.202100120
  5. Bouhjar, F., Derbali, L., & Marí, B. (2020). High performance novel flexible perovskite solar cell based on a low-cost-processed ZnO:Co electron transport layer. Nano Research, 13(9), 2546–2555. https://doi.org/10.1007/s12274-020-2896-4
  6. Cao, K., Zuo, Z., Cui, J., Shen, Y., Moehl, T., Zakeeruddin, S. M., Grätzel, M., & Wang, M. (2015). Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 17, 171–179. https://doi.org/10.1016/j.nanoen.2015.08.009
  7. Cho, A. N., Jang, I. H., Seo, J. Y., & Park, N. G. (2018). Dependence of hysteresis on the perovskite film thickness: Inverse behavior between TiO2 and PCBM in a normal planar structure. Journal of Materials Chemistry A, 6(37), 18206–18215. https://doi.org/10.1039/c8ta04919j
  8. Corzo, D., Tostado-Blázquez, G., & Baran, D. (2020). Flexible Electronics: Status, Challenges and Opportunities. Frontiers in Electronics, 1. https://doi.org/10.3389/felec.2020.594003
  9. Deng, Y., Peng, E., Shao, Y., Xiao, Z., Dong, Q., & Huang, J. (2015). Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy and Environmental Science, 8(5), 1544–1550. https://doi.org/10.1039/c4ee03907f
  10. Erb, T., Zhokhavets, U., Gobsch, G., Raleva, S., Stühn, B., Schilinsky, P., Waldauf, C., & Brabec, C. J. (2005). Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Advanced Functional Materials, 15(7), 1193–1196. https://doi.org/10.1002/adfm.200400521
  11. Eze, M. C., Ugwuanyi, G., Li, M., Eze, H. U., Rodriguez, G. M., Evans, A., Rocha, V. G., Li, Z., & Min, G. (2021). Optimum silver contact sputtering parameters for efficient perovskite solar cell fabrication. Solar Energy Materials and Solar Cells, 230. https://doi.org/10.1016/j.solmat.2021.111185
  12. Fan, L., Ding, Y., Shi, B., Wei, C., Zhang, D., Xie, J., Yu, X., Yan, B., Zhao, Y., & Zhang, X. (2016). Novel insight into the function of PC61BM in efficient planar perovskite solar cells. Nano Energy, 27, 561–568. https://doi.org/10.1016/j.nanoen.2016.08.001
  13. Gao, B., & Meng, J. (2020). High efficiently CsPbBr3 perovskite solar cells fabricated by multi-step spin coating method. Solar Energy, 211, 1223–1229. https://doi.org/10.1016/j.solener.2020.10.045
  14. Gao, Y., Dong, Y., Huang, K., Zhang, C., Liu, B., Wang, S., Shi, J., Xie, H., Huang, H., Xiao, S., He, J., Gao, Y., Hatton, R. A., & Yang, J. (2018). Highly Efficient, Solution-Processed CsPbI2Br Planar Heterojunction Perovskite Solar Cells via Flash Annealing. ACS Photonics, 5(10), 4104–4110. https://doi.org/10.1021/acsphotonics.8b00783
  15. Goje, A. A., Ludin, N. A., Fahsyar, P. N. A., Syafiq, U., Chelvanathan, P., Syakirin, A. D. A. G., Teridi, M. A., Ibrahim, M. A., Su’ait, M. S., Sepeai, S., & Yasir, A. S. H. M. (2024). Review of flexible perovskite solar cells for indoor and outdoor applications. Materials for Renewable and Sustainable Energy. https://doi.org/10.1007/s40243-024-00257-8
  16. Goje, A. A., Ludin, N. A., Mat Teridi, M. A., Syafiq, U., Ibrahim, M. A., Nawab, F., & Syakirin, A. A. (2023). Design and Simulation of Lead-free Flexible Perovskite Solar cell Using SCAPS-1D. IOP Conference Series: Materials Science and Engineering, 1278(1), 012004. https://doi.org/10.1088/1757-899x/1278/1/012004
  17. Hamukwaya, S. L., Hao, H., Mashingaidze, M. M., Zhong, T., Tang, S., Dong, J., Xing, J., & Liu, H. (2022). Potassium Iodide-Modified Lead-Free Cs3Bi2I9 Perovskites for Enhanced High-Efficiency Solar Cells. Nanomaterials, 12(21). https://doi.org/10.3390/nano12213751
  18. Hao, M. Y., Wang, H. Y., Wang, Y., Qin, Y., Zhang, J. P., & Ai, X. C. (2020). Effect of energetic distribution of trap states on fill factor in perovskite solar cells. Journal of Power Sources, 479. https://doi.org/10.1016/j.jpowsour.2020.229077
  19. Isah, M., Doroody, C., Rahman, K. S., Rahman, M. N. A., Goje, A. A., Soudagar, M. E. M., Kiong, T. S., Mubarak, N. M., & Zuhdi, A. W. M. (2024). Exploring the impact of defect energy levels in CdTe/Si dual-junction solar cells using wxAMPS. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-55616-2
  20. Jackson, K. A. (2004). Kinetic processes : crystal growth, diffusion, and phase transitions in materials. Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. https://doi.org/10.1002/3527603891
  21. Jiang, H., Jiang, G., Xing, W., Xiong, W., Zhang, X., Wang, B., Zhang, H., & Zheng, Y. (2018). High Current Density and Low Hysteresis Effect of Planar Perovskite Solar Cells via PCBM-doping and Interfacial Improvement. ACS Applied Materials and Interfaces, 10(35), 29954–29964. https://doi.org/10.1021/acsami.8b06020
  22. Karagiannidis, P. G., Kassavetis, S., Pitsalidis, C., & Logothetidis, S. (2011). Thermal annealing effect on the nanomechanical properties and structure of P3HT:PCBM thin films. Thin Solid Films, 519(12), 4105–4109. https://doi.org/10.1016/j.tsf.2011.01.196
  23. Khadka, D. B., Shirai, Y., Yanagida, M., & Miyano, K. (2019). Tailoring the film morphology and interface band offset of caesium bismuth iodide-based Pb-free perovskite solar cells. Journal of Materials Chemistry C, 7(27), 8335–8343. https://doi.org/10.1039/c9tc02181g
  24. Kong, H., Sun, W., & Zhou, H. (2021). Progress in flexible perovskite solar cells with improved efficiency. Journal of Semiconductors, 42(10). https://doi.org/10.1088/1674-4926/42/10/101605
  25. Krebs, F. C. (2009). Fabrication and processing of polymer solar cells: A review of printing and coating techniques. In Solar Energy Materials and Solar Cells, 93(4), 394–412). https://doi.org/10.1016/j.solmat.2008.10.004
  26. Li, X., Shi, Z., Behrouznejad, F., Hatamvand, M., Zhang, X., Wang, Y., Liu, F., Wang, H., Liu, K., Dong, H., Mudasar, F., Wang, J., Yu, A., & Zhan, Y. (2022). Highly efficient flexible perovskite solar cells with vacuum-assisted low-temperature annealed SnO2 electron transport layer. Journal of Energy Chemistry, 67, 1–7. https://doi.org/10.1016/j.jechem.2021.09.021
  27. Ling, P. S. V., Hagfeldt, A., & Sanchez, S. (2021). Flash infrared annealing for perovskite solar cell processing. Journal of Visualized Experiments, 2021(168), 1–20. https://doi.org/10.3791/61730
  28. Lu, G., He, F., Pang, S., Yang, H., Chen, D., Chang, J., Lin, Z., Zhang, J., & Zhang, C. (2017). A PCBM-Modified TiO2 Blocking Layer towards Efficient Perovskite Solar Cells. International Journal of Photoenergy, 2017. https://doi.org/10.1155/2017/2562968
  29. Maggioni, G. M., & Mazzotti, M. (2019). A Stochastic Population Balance Equation Model for Nucleation and Growth of Crystals with Multiple Polymorphs. Crystal Growth and Design, 19(8), 4698–4709. https://doi.org/10.1021/acs.cgd.9b00577
  30. Mali, S. S., Patil, J. V., Kim, H., & Hong, C. K. (2018). Synthesis of SnO2 nanofibers and nanobelts electron transporting layer for efficient perovskite solar cells. Nanoscale, 10(17), 8275–8284. https://doi.org/10.1039/c8nr00695d
  31. Malison, P., Bhoomanee, C., Choopun, S., Wongratanaphisan, D., Sagawa, T., & Ruankham, P. (2019). Effects of Sn Incorporation in ZnO Thin Films on Properties of Perovskite Solar Cells. IOP Conference Series: Materials Science and Engineering, 526(1). https://doi.org/10.1088/1757-899X/526/1/012018
  32. Miller, S., Fanchini, G., Lin, Y. Y., Li, C., Chen, C. W., Su, W. F., & Chhowalla, M. (2008). Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. Journal of Materials Chemistry, 18(3), 306–312. https://doi.org/10.1039/b713926h
  33. Mohamad Noh, M. F., Teh, C. H., Daik, R., Lim, E. L., Yap, C. C., Ibrahim, M. A., Ahmad Ludin, N., Mohd Yusoff, A. R. Bin, Jang, J., & Mat Teridi, M. A. (2018a). The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C 6(4), 682–712. https://doi.org/10.1039/c7tc04649a
  34. Namkoong, G., Mamun, A. A., & Tasnim Ava, T. (2018). Impact of PCBM/C60 electron transfer layer on charge transports on ordered and disroderd perovskite phases and hysteresis-free perovkstie solar cells. Organic electron, 56,163-169. https://doi.org/10.1016/j.orgel.2018.02.010
  35. Noh, Y. W., Jin, I. S., Kim, K. S., Park, S. H., & Jung, J. W. (2020). Reduced energy loss in SnO2/ZnO bilayer electron transport layer-based perovskite solar cells for achieving high efficiencies in outdoor/indoor environments. Journal of Materials Chemistry A, 8(33), 17163–17173. https://doi.org/10.1039/d0ta04721j
  36. Ouyang, Z., Yang, M., Whitaker, J. B., Li, D., & Van Hest, M. F. A. M. (2020). Toward Scalable Perovskite Solar Modules Using Blade Coating and Rapid Thermal Processing. ACS Applied Energy Materials, 3(4), 3714–3720. https://doi.org/10.1021/acsaem.0c00180
  37. Ramli, N. F., Fahsyar, P. N. A., Ludin, N. A., Teridi, M. A. M., Ibrahim, M. A., Zaidi, S. H., & Sepeai, S. (2019). Compatibility between compact and mesoporous TiO2 layers on the optimization of photocurrent density in photoelectrochemical cells. Surfaces and Interfaces, 17. https://doi.org/10.1016/j.surfin.2019.100341
  38. Sánchez, S., Hua, X., Günzler, A., Bermúdez-Ureña, E., Septiadi, D., Saliba, M., & Steiner, U. (2020). Flash Infrared Pulse Time Control of Perovskite Crystal Nucleation and Growth from Solution. Crystal Growth and Design, 20(2), 670–679. https://doi.org/10.1021/acs.cgd.9b01083
  39. Sánchez, S., Jerónimo-Rendon, J., Saliba, M., & Hagfeldt, A. (2020a). Highly efficient and rapid manufactured perovskite solar cells via Flash InfraRed Annealing. Materials Today, 35, 9–15. https://doi.org/10.1016/j.mattod.2019.11.003
  40. Sánchez, S., Vallés-Pelarda, M., Alberola-Borràs, J. A., Vidal, R., Jerónimo-Rendón, J. J., Saliba, M., Boix, P. P., & Mora-Seró, I. (2019). Flash infrared annealing as a cost-effective and low environmental impact processing method for planar perovskite solar cells. Materials Today, 31, 39–46. https://doi.org/10.1016/j.mattod.2019.04.021
  41. Shah, S. K., Khan, J., Ullah, I., & Khan, Y. (2017). Optimization of active-layer thickness, top electrode and annealing temperature for polymeric solar cells. AIMS Materials Science, 4(3), 789–799. https://doi.org/10.3934/matersci.2017.3.789
  42. Shahiduzzaman, M., Hossain, M. I., Visal, S., Kaneko, T., Qarony, W., Umezu, S., Tomita, K., Iwamori, S., Knipp, D., Tsang, Y. H., Akhtaruzzaman, M., Nunzi, J. M., Taima, T., & Isomura, M. (2021). Spray Pyrolyzed TiO2 Embedded Multi-Layer Front Contact Design for High-Efficiency Perovskite Solar Cells. Nano-Micro Letters, 13(1). https://doi.org/10.1007/s40820-020-00559-2
  43. Taheri, B., De Rossi, F., Lucarelli, G., Castriotta, L. A., Di Carlo, A., Brown, T. M., & Brunetti, F. (2021). Laser-Scribing Optimization for Sprayed SnO2-Based Perovskite Solar Modules on Flexible Plastic Substrates. ACS Applied Energy Materials, 4(5), 4507–4518. https://doi.org/10.1021/acsaem.1c00140
  44. Tzounis, L., Stergiopoulos, T., Zachariadis, A., Gravalidis, C., Laskarakis, A., & Logothetidis, S. (2017). Perovskite solar cells from small scale spin coating process towards roll-to-roll printing: Optical and Morphological studies. Materials Today: Proceedings, 4(4), 5082–5089. https://doi.org/10.1016/j.matpr.2017.04.117
  45. Vijaya, S., Subbiah, J., Jones, D. J., & Anandan, S. (2023). LARP-assisted synthesis of CsBi 3 I 10 perovskite for efficient lead-free solar cells . RSC Advances, 13(15), 9978–9982. https://doi.org/10.1039/d3ra00365e
  46. Wang, B., Yang, J., Lu, L., Xiao, W., Wu, H., Xiong, S., Tang, J., Duan, C., & Bao, Q. (2020). Interface Engineering of Air-Stable n-Doping Fullerene-Modified TiO2 Electron Transport Layer for Highly Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 7(6). https://doi.org/10.1002/admi.201901964
  47. Wang, H., Wang, X., Zhang, H., Ma, W., Wang, L., & Zong, X. (2020). Organic−inorganic hybrid perovskites: Game-changing candidates for solar fuel production. Nano Energy, 71. https://doi.org/10.1016/j.nanoen.2020.104647
  48. Wang, K. L., Zhou, Y. H., Lou, Y. H., & Wang, Z. K. (2021). Perovskite indoor photovoltaics: opportunity and challenges. In Chemical Science,12(36), 11936–11954.. https://doi.org/10.1039/d1sc03251h
  49. Wang, L., Liu, G., Xi, X., Yang, G., Hu, L., Zhu, B., He, Y., Liu, Y., Qian, H., Zhang, S., & Zai, H. (2022). Annealing Engineering in the Growth of Perovskite Grains. Crystals, 12(7). https://doi.org/10.3390/cryst12070894
  50. Wang, X., Liman, C. D., Treat, N. D., Chabinyc, M. L., & Cahill, D. G. (2013). Ultralow thermal conductivity of fullerene derivatives. Physical Review B - Condensed Matter and Materials Physics, 88(7). https://doi.org/10.1103/PhysRevB.88.075310
  51. Waykar, R., Bhorde, A., Nair, S., Pandharkar, S., Gabhale, B., Aher, R., Rondiya, S., Waghmare, A., Doiphode, V., Punde, A., Vairale, P., Prasad, M., & Jadkar, S. (2020). Environmentally stable lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite: Synthesis to solar cell application. Journal of Physics and Chemistry of Solids, 146. https://doi.org/10.1016/j.jpcs.2020.109608
  52. Yang, D., Zhang, X., Wang, K., Wu, C., Yang, R., Hou, Y., Jiang, Y., Liu, S., & Priya, S. (2019). Stable Efficiency Exceeding 20.6% for Inverted Perovskite Solar Cells through Polymer-Optimized PCBM Electron-Transport Layers. Nano Letters, 19(5), 3313–3320. https://doi.org/10.1021/acs.nanolett.9b00936
  53. Yang, Z., Chen, W., Mei, A., Li, Q., & Liu, Y. (2021). Flexible MAPbI3 perovskite solar cells with the high efficiency of 16.11% by low-temperature synthesis of compact anatase TiO2 film. Journal of Alloys and Compounds, 854. https://doi.org/10.1016/j.jallcom.2020.155488
  54. Ye, X., Ling, H., Zhang, R., Wen, Z., Hu, S., Akasaka, T., Xia, J., & Lu, X. (2020). Low-temperature solution-combustion-processed Zn-Doped Nb2O5 as an electron transport layer for efficient and stable perovskite solar cells. Journal of Power Sources, 448. https://doi.org/10.1016/j.jpowsour.2019.227419
  55. Yu, B. Bin, Liao, M., Yang, J., Chen, W., Zhu, Y., Zhang, X., Duan, T., Yao, W., Wei, S. H., & He, Z. (2019). Alloy-induced phase transition and enhanced photovoltaic performance: The case of Cs3Bi2I9-xBrx perovskite solar cells. Journal of Materials Chemistry A, 7(15), 8818–8825. https://doi.org/10.1039/c9ta01978b
  56. Zhang, F., Castaneda, J. F., Chen, S., Wu, W., DiNezza, M. J., Lassise, M., Nie, W., Mohite, A., Liu, Y., Liu, S., Friedman, D., Liu, H., Chen, Q., Zhang, Y. H., Huang, J., & Zhang, Y. (2020). Comparative studies of optoelectrical properties of prominent PV materials: Halide perovskite, CdTe, and GaAs. Materials Today, 36, 18–29. https://doi.org/10.1016/j.mattod.2020.01.001
  57. Zhang, S., Wang, Z., Guo, B., & Xu, J. (2021). Secondary nucleation in polymer crystallization: A kinetic view. Polymer Crystallization, 4(3). https://doi.org/10.1002/pcr2.10173
  58. Zhang, W., Lin, Z., Cai, Q. Xu, X., Dong, H., Mu, C. and Zhang, J.-P. (2022). Electron Transport Assisted by Transparent Conductive Oxide Elements in Perovskite Solar Cells. ChemSusChem, 4(4), 112–143. https://doi.org/10.1002/cssc.202102002
  59. Zhong, Y., Hufnagel, M., Thelakkat, M., Li, C., & Huettner, S. (2020a). Role of PCBM in the Suppression of Hysteresis in Perovskite Solar Cells. Advanced Functional Materials, 30(23). https://doi.org/10.1002/adfm.201908920

Last update:

No citation recorded.

Last update: 2025-07-10 22:03:46

No citation recorded.