skip to main content

Hydrogen-rich syngas production of solid waste supercritical water gasification multi-objective process optimization

1Department of Mechanical Engineering, Faculty of Engineering, University of Indonesia, Kampus UI Depok 16424, Indonesia

2Biomass Gasification Research Laboratory, Universitas Indonesia, Kampus UI Depok 16424, Indonesia

3Tropical Renewable Energy Research Center, Faculty of Engineering, University of Indonesia, Kampus UI Depok 16424, Indonesia

4 Department of Energy System Engineering, Faculty of Engineering, University of Indonesia, Kampus UI Depok 16424, Indonesia

View all affiliations
Received: 15 Nov 2024; Revised: 16 Mar 2025; Accepted: 30 Apr 2025; Available online: 8 May 2025; Published: 1 Jul 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The increasing population and changing lifestyles have led to significant solid waste accumulation, necessitating efficient waste management to prevent environmental and health issues. Supercritical water gasification (SCWG) is an effective method for converting high-moisture biomass into hydrogen-rich syngas, operating at temperatures above 374°C and pressures above 490MPa. The objective of this study was to develop and validate an integrated modeling and multi-objective optimization framework, combining Response Surface Methodology (RSM), Artificial Neural Networks (ANN), and Multi-Objective Genetic Algorithm (MOGA) to maximize hydrogen-rich syngas production from municipal solid waste through SCWG. The research models and predicts the effects of feed concentration, residence time, and reaction temperature on hydrogen yield, lower heating value (LHV), and gas yield. The integrated RSM and ANN models demonstrated high predictive accuracy with R² values exceeding 0.95. Optimization results from MOGA identified optimal parameters: a feed concentration of 2%, a reaction temperature between 490-495°C, and a residence time of 80 minutes. These conditions achieved H2 selectivity of 84.73%, an LHV of 6.95 MJ/Nm³, and a gas yield of 29.7%. The findings highlight the dominant influence of reaction temperature and residence time on hydrogen production, while feed concentration requires careful balance for optimal syngas quality. This study demonstrates that the combined use of RSM, ANN, and MOGA provides an effective framework for optimizing SCWG processes, offering practical insights for industrial-scale applications. Future research should explore additional variables such as biomass composition, pressure, and catalysts to enhance the efficiency and sustainability of hydrogen production from solid waste, supporting SCWG as a viable technology for sustainable energy production and effective waste management.

Fulltext View|Download
Keywords: Supercritical Water Gasification (SCWG); Hydrogen-Rich Syngas; Waste-to-Energy (WTE); Response Surface Methodology (RSM); Multi-Objective Optimization (MOGA)

Article Metrics:

  1. Abioye, K. J., Harun, N. Y., Arshad, U., Sufian, S., Yusuf, M., Jagaba, A. H., Ighalo, J. O., Al-Kahtani, A. A., Kamyab, H., Kumar, A., Prakash, C., Okolie, J. A., & Ibrahim, H. (2024). Response surface methodology and artificial neural network modelling of palm oil decanter cake and alum sludge co-gasification for syngas (CO+H2) production. International Journal of Hydrogen Energy, 84, 200–214. https://doi.org/10.1016/j.ijhydene.2024.06.397
  2. Aentung, T., Wu, W., & Patcharavorachot, Y. (2024). Process design and muti-objective optimization of solid waste/biomass co-gasification considering tar formation. Journal of the Taiwan Institute of Chemical Engineers, 164. https://doi.org/10.1016/j.jtice.2024.105688
  3. Albarelli, J. Q., Mian, A., Santos, D. T., Ensinas, A. V., Maréchal, F., & Meireles, M. A. A. (2017). Multi-objective optimization of supercritical water gasification of leftover Brazilian ginseng roots after phytochemical recovery steps. Brazilian Journal of Chemical Engineering, 34(3), 841–850. https://doi.org/10.1590/0104-6632.20170343s20150279
  4. Ascher, S., Sloan, W., Watson, I., & You, S. (2022). A comprehensive artificial neural network model for gasification process prediction. Applied Energy, 320, 119289. https://doi.org/10.1016/j.apenergy.2022.119289
  5. Bakari, R., Kivevele, T., Huang, X., & Jande, Y. A. C. (2021). Sub- And Supercritical Water Gasification of Rice Husk: Parametric Optimization Using the I-Optimality Criterion. ACS Omega, 6(19), 12480–12499. https://doi.org/10.1021/acsomega.0c06318
  6. Basu, P., & Mettanant, V. (2009). Biomass Gasification in Supercritical Water -- A Review. International Journal of Chemical Reactor Engineering, 7(1). https://doi.org/10.2202/1542-6580.1919
  7. Beck, M. W. (2018). Visualization and Analysis Tools for Neural Networks. Journal of Statistical Software, 85(11). https://doi.org/10.18637/jss.v085.i11
  8. Blair, J., & Mataraarachchi, S. (2021). A Review of Landfills, Waste and the Nearly Forgotten Nexus with Climate Change. Environments, 8(8), 73. https://doi.org/10.3390/environments8080073
  9. Brereton, R. G. (2019). ANOVA tables and statistical significance of models. Journal of Chemometrics, 33(3). https://doi.org/10.1002/cem.3019
  10. Brunner, G. (2009). Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids, 47(3), 373–381. https://doi.org/10.1016/j.supflu.2008.09.002
  11. Cao, W., Wei, W., Jin, H., Yi, L., & Wang, L. (2022). Optimize hydrogen production from chicken manure gasification in supercritical water by experimental and kinetics study. Journal of Environmental Chemical Engineering, 10(3), 107591. https://doi.org/10.1016/j.jece.2022.107591
  12. Chen, Y., Yi, L., Wei, W., Jin, H., & Guo, L. (2022). Hydrogen production by sewage sludge gasification in supercritical water with high heating rate batch reactor. Energy, 238, 121740. https://doi.org/10.1016/j.energy.2021.121740
  13. Córdoba, V. E., Mussi, J., De Paula, M., & Acosta, G. G. (2023). Prediction of Biomethane Production of Cheese Whey by Using Artificial Neural Networks. IEEE Latin America Transactions, 21(9), 1032–1039. https://doi.org/10.1109/TLA.2023.10251810
  14. Demirbas, A. (2011). Waste management, waste resource facilities and waste conversion processes. Energy Conversion and Management, 52(2), 1280–1287. https://doi.org/10.1016/j.enconman.2010.09.025
  15. DEMİRBAY, B., & KARAKULLUKÇU, A. B. (2020). Artificial Neural Network (ANN) Approach for Dynamic Viscosity of Aqueous Gelatin Solutions: A Soft Computing Study. European Journal of Science and Technology, 465–475. https://doi.org/10.31590/ejosat.680773
  16. Du, K.-L., Leung, C.-S., Mow, W. H., & Swamy, M. N. S. (2022). Perceptron: Learning, Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era. Mathematics, 10(24), 4730. https://doi.org/10.3390/math10244730
  17. Durakovic, B. (2017). Design of experiments application, concepts, examples: State of the art. Periodicals of Engineering and Natural Sciences (PEN), 5(3). https://doi.org/10.21533/pen.v5i3.145
  18. Durgut, P. G., Tozak, M. B., & Ayvaz, M. T. (2024). SHuffled Ant Lion Optimization approach with an exponentially weighted random walk strategy. Neural Computing and Applications, 36(18), 10475–10499. https://doi.org/10.1007/s00521-024-09566-5
  19. Evans, S. J. (2019). How Digital Engineering and Cross-Industry Knowledge Transfer is Reducing Project Execution Risks in Oil and Gas. Day 2 Tue, May 07, 2019. https://doi.org/10.4043/29458-MS
  20. Farooq, M. U., Zafar, A. M., Raheem, W., Jalees, M. I., & Aly Hassan, A. (2022). Assessment of Algorithm Performance on Predicting Total Dissolved Solids Using Artificial Neural Network and Multiple Linear Regression for the Groundwater Data. Water, 14(13), 2002. https://doi.org/10.3390/w14132002
  21. Fozer, D., Kiss, B., Lorincz, L., Szekely, E., Mizsey, P., & Nemeth, A. (2019). Improvement of microalgae biomass productivity and subsequent biogas yield of hydrothermal gasification via optimization of illumination. Renewable Energy, 138, 1262–1272. https://doi.org/10.1016/j.renene.2018.12.122
  22. Gammoudi, N., Mabrouk, M., Bouhemda, T., Nagaz, K., & Ferchichi, A. (2021). Modeling and optimization of capsaicin extraction from Capsicum annuum L. using response surface methodology (RSM), artificial neural network (ANN), and Simulink simulation. Industrial Crops and Products, 171, 113869. https://doi.org/10.1016/j.indcrop.2021.113869
  23. GUO, L., LU, Y., ZHANG, X., JI, C., GUAN, Y., & PEI, A. (2007). Hydrogen production by biomass gasification in supercritical water: A systematic experimental and analytical study. Catalysis Today, 129(3–4), 275–286. https://doi.org/10.1016/j.cattod.2007.05.027
  24. Guo, Q., & Dai, X. (2017). Analysis on carbon dioxide emission reduction during the anaerobic synergetic digestion technology of sludge and kitchen waste: Taking kitchen waste synergetic digestion project in Zhenjiang as an example. Waste Management, 69, 360–364. https://doi.org/10.1016/j.wasman.2017.08.033
  25. Hantoko, D., Antoni, Kanchanatip, E., Yan, M., Weng, Z., Gao, Z., & Zhong, Y. (2019). Assessment of sewage sludge gasification in supercritical water for H2-rich syngas production. Process Safety and Environmental Protection, 131, 63–72. https://doi.org/10.1016/j.psep.2019.08.035
  26. Hardiansyah, H. (2021). Multi-Objective Ant Lion Optimizer for Solving Environmental/Economic Dispatch. PRZEGLĄD ELEKTROTECHNICZNY, 1(2), 155–160. https://doi.org/10.15199/48.2021.02.32
  27. Houcinat, I., Outili, N., & Meniai, A. H. (2018). Optimization of gas production and efficiency of supercritical glycerol gasification using response surface methodology. Biofuels, 9(5), 625–633. https://doi.org/10.1080/17597269.2018.1433968
  28. Ibtissem, H., Nawel, O., Hassen, M. A., & Elsa, W.-H. (2019). Supercritical water gasification of glycerol for Hydrogen production using response surface methodology. 10th International Renewable Energy Congress (IREC), 1–6. https://doi.org/10.1109/IREC.2019.8754520
  29. Inayat, M., Sulaiman, S. A., Shahbaz, M., & Bhayo, B. A. (2020). Application of response surface methodology in catalytic co-gasification of palm wastes for bioenergy conversion using mineral catalysts. Biomass and Bioenergy, 132, 105418. https://doi.org/10.1016/j.biombioe.2019.105418
  30. Jin, H., Guo, L., Guo, J., Ge, Z., Cao, C., & Lu, Y. (2015). Study on gasification kinetics of hydrogen production from lignite in supercritical water. International Journal of Hydrogen Energy, 40(24), 7523–7529. https://doi.org/10.1016/j.ijhydene.2014.12.095
  31. Kavitha Mayilvaganan, M., & Naidu, K. B. (2011). Application of Artificial Neural Network for the Prediction of Groundwater Level in Hard Rock Region (pp. 673–682). https://doi.org/10.1007/978-3-642-24043-0_68
  32. Kayri, M. (2016). Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data. Mathematical and Computational Applications, 21(2), 20. https://doi.org/10.3390/mca21020020
  33. Kemeterian LHK. (2023). Data Timbulan Sampah Nasional. https://sipsn.menlhk.go.id/sipsn/public/data/timbulan
  34. Khandelwal, K., Nanda, S., Boahene, P., & Dalai, A. K. (2024). Hydrogen production from supercritical water gasification of canola residues. International Journal of Hydrogen Energy, 49, 1518–1527. https://doi.org/10.1016/j.ijhydene.2023.10.228
  35. Kiranyaz, S., Ince, T., Iosifidis, A., & Gabbouj, M. (2017). Generalized model of biological neural networks: Progressive operational perceptrons. 2017 International Joint Conference on Neural Networks (IJCNN), 2477–2485. https://doi.org/10.1109/IJCNN.2017.7966157
  36. Kulkarni, S. P., Joshi, S. S., & Kulkarni, A. A. (2023). Reaction pathways and kinetics of N -acetyl- d -glucosamine hydrolysis in sub- and supercritical water. Reaction Chemistry & Engineering, 8(5), 1097–1108. https://doi.org/10.1039/D3RE00046J
  37. Li, B., Zhang, B., Guan, Q., Chen, S., & Ning, P. (2018). Activity of Ni/CeO2 catalyst for gasification of phenol in supercritical water. International Journal of Hydrogen Energy, 43(41), 19010–19018. https://doi.org/10.1016/j.ijhydene.2018.08.105
  38. Li, H., Lei, J., Jia, M., Xu, H., & Wu, S. (2023). High Dimensional Model Representation Approach for Prediction and Optimization of the Supercritical Water Gasification System Coupled with Photothermal Energy Storage. Processes, 11(8), 2313. https://doi.org/10.3390/pr11082313
  39. Li, J., Pan, L., Suvarna, M., & Wang, X. (2021). Machine learning aided supercritical water gasification for H2-rich syngas production with process optimization and catalyst screening. Chemical Engineering Journal, 426, 131285. https://doi.org/10.1016/j.cej.2021.131285
  40. Li, L., Li, X., & Cao, W. (2023). Reaction pathway and kinetics study on supercritical water gasification of oily sludge. Journal of Analytical and Applied Pyrolysis, 170, 105920. https://doi.org/10.1016/j.jaap.2023.105920
  41. Lin, R., Zhou, Z., You, S., Rao, R., & Kuo, C.-C. J. (2024). Geometrical Interpretation and Design of Multilayer Perceptrons. IEEE Transactions on Neural Networks and Learning Systems, 35(2), 2545–2559. https://doi.org/10.1109/TNNLS.2022.3190364
  42. Lombardi, L., Carnevale, E., & Corti, A. (2015). A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Management, 37, 26–44. https://doi.org/10.1016/j.wasman.2014.11.010
  43. Lu, P., Huang, Q., Bourtsalas, A. C. (Thanos), Themelis, N. J., Chi, Y., & Yan, J. (2019). Review on fate of chlorine during thermal processing of solid wastes. Journal of Environmental Sciences (China) , 78, 13–28. Chinese Academy of Sciences. https://doi.org/10.1016/j.jes.2018.09.003
  44. Mirjalili, S. (2015). The Ant Lion Optimizer. Advances in Engineering Software, 83, 80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010
  45. Mirjalili, S., Jangir, P., & Saremi, S. (2017). Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Applied Intelligence, 46(1), 79–95. https://doi.org/10.1007/s10489-016-0825-8
  46. Mondal, P. (2022). From municipal solid waste (MSW) to hydrogen: Performance optimization of a fixed bed gasifier using Box-Benkhen method. International Journal of Hydrogen Energy, 47(46), 20064–20075. https://doi.org/10.1016/j.ijhydene.2022.04.150
  47. Nanda, S., Reddy, S. N., Vo, D. N., Sahoo, B. N., & Kozinski, J. A. (2018). Catalytic gasification of wheat straw in hot compressed (subcritical and supercritical) water for hydrogen production. Energy Science & Engineering, 6(5), 448–459. https://doi.org/10.1002/ese3.219
  48. Okolie, J. A., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2020). Optimization and modeling of process parameters during hydrothermal gasification of biomass model compounds to generate hydrogen-rich gas products. International Journal of Hydrogen Energy, 45(36), 18275–18288. https://doi.org/10.1016/j.ijhydene.2019.05.132
  49. Pandey, D. S., Das, S., Pan, I., Leahy, J. J., & Kwapinski, W. (2016). Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste Management, 58, 202–213. https://doi.org/10.1016/j.wasman.2016.08.023
  50. Pandey, D. S., Pan, I., Das, S., Leahy, J. J., & Kwapinski, W. (2015). Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier. Bioresource Technology, 179, 524–533. https://doi.org/10.1016/j.biortech.2014.12.048
  51. Popoola, S. I., Jefia, A., Atayero, A. A., Kingsley, O., Faruk, N., Oseni, O. F., & Abolade, R. O. (2019). Determination of Neural Network Parameters for Path Loss Prediction in Very High Frequency Wireless Channel. IEEE Access, 7, 150462–150483. https://doi.org/10.1109/ACCESS.2019.2947009
  52. Puig-Arnavat, M., Hernández, J. A., Bruno, J. C., & Coronas, A. (2013). Artificial neural network models for biomass gasification in fluidized bed gasifiers. Biomass and Bioenergy, 49, 279–289. https://doi.org/10.1016/j.biombioe.2012.12.012
  53. Qian, J., Wang, T., Jiang, H., Yu, Y., & Miao, D. (2023). A TOPSIS method based on sequential three-way decision. Applied Intelligence, 53(24), 30661–30676. https://doi.org/10.1007/s10489-023-05183-2
  54. Qiao, X., Ding, J., She, C., Mao, W., Zhang, A., Feng, B., & Xu, Y. (2024). A metaheuristic Multi-Objective optimization of energy and environmental performances of a Waste-to-Energy system based on waste gasification using particle swarm optimization. Energy Conversion and Management, 317. https://doi.org/10.1016/j.enconman.2024.118844
  55. Qiu, Y., Liu, Y., Fang, C., Ju, M., Xia, R., & Wang, Y. (2024). Supercritical water gasification of oily sludge and its life cycle assessment. BioResources, 19(2), 2327–2341. https://doi.org/10.15376/biores.19.2.2327-2341
  56. Ramaswamy, M. D. K., Thangarasu, V., Jaganathan, V. M., Angkayarkan Vinayakaselvi, M., & Ramanathan, A. (2025). Synthesis, characterization and optimization of gasification products from Aegle Marmelos Correa shell in a downdraft gasifier using ANN and RSM. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 239(2), 601–615. https://doi.org/10.1177/09544089231171030
  57. Rawat, S., Wagadre, L., & Kumar, S. (2024). Multi-objective genetic algorithm approach for enhanced cumulative hydrogen and methane-rich syngas emission through co-pyrolysis of de-oiled microalgae and coal blending. Renewable Energy, 225, 120264. https://doi.org/10.1016/j.renene.2024.120264
  58. Reddy, S. N., Nanda, S., Dalai, A. K., & Kozinski, J. A. (2014). Supercritical water gasification of biomass for hydrogen production. International Journal of Hydrogen Energy, 39(13), 6912–6926. https://doi.org/10.1016/j.ijhydene.2014.02.125
  59. Rizal, R., Wahyuni, F., Julian, J., Nasruddin, & Yulia, F. (2024). Optimal design and modelling of sustainable bio-catalytic enzyme for wastewater treatment using response surface methodology and artificial neural network. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 5254–5273. https://doi.org/10.1080/15567036.2024.2332468
  60. Rodriguez Correa, C., & Kruse, A. (2018). Supercritical water gasification of biomass for hydrogen production – Review. The Journal of Supercritical Fluids, 133, 573–590. https://doi.org/10.1016/j.supflu.2017.09.019
  61. Sesotyo, P. A., Nur, M., & Suseno, J. E. (2019). Plasma gasification modeling of municipal solid waste from Jatibarang Landfill in Semarang, Indonesia: analyzing its performance parameters for energy potential. E3S Web of Conferences, 14009–14015. https://doi.org/10.1051/e3sconf/201
  62. Shahbaz, M., Yusup, S., Inayat, A., Patrick, D. O., Pratama, A., & Ammar, M. (2017). Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash. Bioresource Technology, 241, 284–295. https://doi.org/10.1016/j.biortech.2017.05.119
  63. Shen, L., Liu, S., Fu, S., Wang, Y., Zhou, W., & Bai, B. (2025). Thermodynamic analysis and multi-criteria optimization of supercritical water gasification for polygeneration of hydrogen, heat, and electricity from plastic wastes. International Journal of Hydrogen Energy, 100, 284–295. https://doi.org/10.1016/j.ijhydene.2024.12.345
  64. Shih, H.-S. (2022). TOPSIS Basics (pp. 17–31). https://doi.org/10.1007/978-3-031-09577-1_2
  65. Soesanti, I., & Syahputra, R. (2022). Multiobjective Ant Lion Optimization for Performance Improvement of Modern Distribution Network. IEEE Access, 10, 12753–12773. https://doi.org/10.1109/ACCESS.2022.3147366
  66. Su, H., Kanchanatip, E., Wang, D., Zheng, R., Huang, Z., Chen, Y., Mubeen, I., & Yan, M. (2020). Production of H2-rich syngas from gasification of unsorted food waste in supercritical water. Waste Management, 102, 520–527. https://doi.org/10.1016/j.wasman.2019.11.018
  67. Su, W., Cai, C., Liu, P., Lin, W., Liang, B., Zhang, H., Ma, Z., Ma, H., Xing, Y., & Liu, W. (2020). Supercritical water gasification of food waste: Effect of parameters on hydrogen production. International Journal of Hydrogen Energy, 45(29), 14744–14755. https://doi.org/10.1016/j.ijhydene.2020.03.190
  68. Sun, J., Zhang, R., Wang, M., Zhang, J., Qiu, S., Tian, W., & Su, G. H. (2022). Multi-objective optimization of helical coil steam generator in high temperature gas reactors with genetic algorithm and response surface method. Energy, 259, 124976. https://doi.org/10.1016/j.energy.2022.124976
  69. Umar, H. A., Shaik, N. B., Inayat, M., & Sulaiman, S. A. (2024). ANN-RSM based multi-parametric optimisation and modelling of H2 and syngas from co-gasification of residues from oil palm plants. Process Safety and Environmental Protection, 188, 759–780. https://doi.org/10.1016/j.psep.2024.05.103
  70. Yadav, S. K., Joseph, D., & Jigeesh, N. (2018). A review on industrial applications of TOPSIS approach. International Journal of Services and Operations Management, 30(1), 23. https://doi.org/10.1504/IJSOM.2018.091438
  71. Yadav, V., Karmakar, S., Kalbar, P. P., & Dikshit, A. K. (2019). PyTOPS: A Python based tool for TOPSIS. SoftwareX, 9, 217–222. https://doi.org/10.1016/j.softx.2019.02.004
  72. Yan, M., Su, H., Hantoko, D., Kanchanatip, E., Shahul Hamid, F. B., Zhang, S., Wang, G., & Xu, Z. (2019). Experimental study on the energy conversion of food waste via supercritical water gasification: Improvement of hydrogen production. International Journal of Hydrogen Energy, 44(10), 4664–4673. https://doi.org/10.1016/j.ijhydene.2018.12.193
  73. Yang, C., Wang, S., Li, Y., Zhang, Y., & Cui, C. (2021). Thermodynamic analysis of hydrogen production via supercritical water gasification of coal, sewage sludge, microalga, and sawdust. International Journal of Hydrogen Energy, 46(34), 18042–18050. https://doi.org/10.1016/j.ijhydene.2020.06.198
  74. Yang, Y., Zhao, L., Zhang, J., & Huang, R. (2022). Operating parametric analysis and kinetic modeling of methanol gasification in supercritical water. The Journal of Supercritical Fluids, 180, 105448. https://doi.org/10.1016/j.supflu.2021.105448
  75. Zaman, S. A., Roy, D., & Ghosh, S. (2020). Process modeling and optimization for biomass steam-gasification employing response surface methodology. Biomass and Bioenergy, 143, 105847. https://doi.org/10.1016/j.biombioe.2020.105847
  76. Zandifar, A., Esmaeilzadeh, F., & Rodríguez-Mirasol, J. (2024). Hydrogen-rich gas production via supercritical water gasification (SCWG) of oily sludge over waste tire-derived activated carbon impregnated with Ni: Characterization and optimization of activated carbon production. Environmental Pollution, 342. https://doi.org/10.1016/j.envpol.2023.123078
  77. Zhang, Y., Li, L., Xu, P., Liu, B., Shuai, Y., & Li, B. (2019). Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect. International Journal of Hydrogen Energy, 44(30), 15727–15736. https://doi.org/10.1016/j.ijhydene.2019.01.151
  78. Zhao, L., Zhou, H., Yin, Y., Lu, Q., & Zhang, J. (2020). Effects of potassium carbonate on acetaldehyde gasification in supercritical water. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(10), 1286–1298. https://doi.org/10.1080/15567036.2019.1648602
  79. Zhu, L., Li, H., Chen, S., Tian, X., Kang, X., Jiang, X., & Qiu, S. (2020). Optimization analysis of a segmented thermoelectric generator based on genetic algorithm. Renewable Energy, 156, 710–718. https://doi.org/10.1016/j.renene.2020.04.120
  80. Ziraba, A. K., Haregu, T. N., & Mberu, B. (2016). A review and framework for understanding the potential impact of poor solid waste management on health in developing countries. Archives of Public Health, 74(1), 55. https://doi.org/10.1186/s13690-016-0166-4

Last update:

No citation recorded.

Last update: 2025-07-11 06:01:42

No citation recorded.