skip to main content

Response surface optimization of biodiesel synthesis from crude palm oil (CPO) using CaO/silica gel heterogeneous catalyst based on blood cockle shell and coconut fiber

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru 28293, Indonesia

2Master Program of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru 28293, Indonesia

Received: 7 Nov 2024; Revised: 5 Jan 2025; Accepted: 27 Jan 2025; Available online: 15 Feb 2025; Published: 1 Mar 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study successfully synthesized a hybrid catalyst CaO-silica gel from environmentally friendly raw materials, CaO derived from blood clam shells and silica gel obtained from coconut fiber waste ash. The catalytic activity was evaluated in the synthesis of biodiesel from crude palm oil (CPO). The CaO-Silica gel catalyst was synthesized by the wet impregnation method with variations of silica gel, namely 5, 10 and 15 wt%. The catalyst was characterized using XRD, XRF, SEM, and BET analysis. The results showed a decrease in CaO content with increasing silica gel concentration, while XRD analysis confirmed the presence of lime, portlandite, Ca₂SiO₄, and silica oxide minerals. The addition of silica gel reduced the crystal size and crystallinity and increased the surface area of the catalyst. Optimization of biodiesel production was carried out using the Response Surface Methodology (RSM), considering variables such as temperature, reaction time, molar ratio of oil to methanol, and catalyst loading. The highest biodiesel yield was obtained using 5% CaO/silica gel catalyst at a temperature of 65°C, a reaction time of 60 minutes, an oil-methanol molar ratio of 1:9, and a catalyst addition of 2%, resulting in a biodiesel yield of 99.52%. In addition, the methyl ester content reached 99.21% using a 10% CaO/silica gel catalyst. The resulting biodiesel met ASTM and EN standards, except for the acid value.

Fulltext View|Download
Keywords: Calcium oxide; Silica gel; Crude palm oil; Biodiesel; Response surface methodology (RSM).
Funding: Department of Chemistry, Faculty of Mathematics and Natural Sciences, Riau University, Pekanbaru 28293, Indonesia

Article Metrics:

  1. Ahamed, M. S., Lingfa, P., & Chandrasekaran, M. (2023). RSM modelling and optimization for performance evaluation of biodiesel production process from livistona jenkinsiana using NaOH as a catalyst. Engineering Research Express, 5(4). https://doi.org/10.1088/2631-8695/ad069b
  2. Ahmed, M., Ahmad, K. A., Vo, D.-V. N., Yusuf, M., Haq, A., Abdullah, A., Aslam, M., Patle, D. S., Ahmad, Z., Ahmad, E., & Athar, M. (2023). Recent trends in sustainable biodiesel production using heterogeneous nanocatalysts: Function of supports, promoters, synthesis techniques, reaction mechanism, and kinetics and thermodynamic studies. Energy Conversion and Management, 280, 116821. https://doi.org/10.1016/j.enconman.2023.116821
  3. Aibuedefe, F., Osaro, K., & Tina, E. (2023). Sustainable Chemistry for the Environment Process optimization for blended waste frying oil in biodiesel production using CaO derived from African periwinkle shell catalyst through response surface methodology. Sustainable Chemistry for the Environment, 4(March), 100042. https://doi.org/10.1016/j.scenv.2023.100042
  4. Ajala, E. O., Ajala, M. A., Ajao, A. O., Saka, H. B., & Oladipo, A. C. (2020). Calcium-carbide residue: A precursor for the synthesis of CaO–Al2O3–SiO2–CaSO4 solid acid catalyst for biodiesel production using waste lard. Chemical Engineering Journal Advances, 4(October), 100033. https://doi.org/10.1016/j.ceja.2020.100033
  5. Al-Muhtaseb, A. H., Jamil, F., Al-Haj, L., Zar Myint, M. T., Mahmoud, E., Ahmad, M. N. M., Hasan, A. O., & Rafiq, S. (2018). Biodiesel production over a catalyst prepared from biomass-derived waste date pits. Biotechnology Reports, 20. https://doi.org/10.1016/j.btre.2018.e00284
  6. Alhadhrami, A., Mohamed, G. G., Sadek, A. H., Ismail, S. H., Ebnalwaled, A. A., & Almalki, A. S. A. (2022). Behavior of Silica Nanoparticles Synthesized from Rice Husk Ash by the Sol–Gel Method as a Photocatalytic and Antibacterial Agent. Materials, 15(22). https://doi.org/10.3390/ma15228211
  7. Anuar, M. F., Fen, Y. W., Zaid, M. H. M., Matori, K. A., & Khaidir, R. E. M. (2020). The physical and optical studies of crystalline silica derived from the green synthesis of coconut husk ash. Applied Sciences (Switzerland), 10(6). https://doi.org/10.3390/app10062128
  8. Ayoola, A. A., Hymore, F. K., Omonhinmin, C. A., Babalola, P. O., Fayomi, O. S. I., Olawole, O. C., Olawepo, A. V., & Babalola, A. (2020). Response surface methodology and artificial neural network analysis of crude palm kernel oil biodiesel production. Chemical Data Collections, 28. https://doi.org/10.1016/j.cdc.2020.100478
  9. Buasri, A., Kamsuwan, J., Dokput, J., Buakaeo, P., Horthong, P., & Loryuenyong, V. (2024). Green synthesis of metal oxides (CaO-K2O) catalyst using golden apple snail shell and cultivated banana peel for production of biofuel from non-edible Jatropha Curcas oil (JCO) via a central composite design (CCD). Journal of Saudi Chemical Society, 28(3), 101836. https://doi.org/10.1016/j.jscs.2024.101836
  10. Chumuang, N., & Punsuvon, V. (2017). Response Surface Methodology for Biodiesel Production Using Calcium Methoxide Catalyst Assisted with Tetrahydrofuran as Cosolvent. Journal of Chemistry, 2017. https://doi.org/10.1155/2017/4190818
  11. Ghadafi, M., Santosa, S. J., Kamiya, Y., & Nuryono, N. (2020). Free na and less fe compositions of SiO2 extracted from rice husk ash as the silica source for synthesis of white mineral trioxide aggregate. Key Engineering Materials, 840 KEM, 311–317. https://doi.org/10.4028/www.scientific.net/kem.840.311
  12. Hadiyanto, H., Lestari, S.P., Abdullah, A.,Widayat, W., Sutanto, H. (2016). The development of fly ash-supported CaO derived from mollusk shell of Anadara granosa and Paphia undulata as heterogeneous CaO catalyst in biodiesel synthesis. International Journal of Energy and Environmental Engineering, 7(3), 297–305. https://doi.org/10.1007/s40095-016-0212-6
  13. Haryono, H., Ishmayana, S., & Fauziyah, I. (2023). Synthesis and Characterization of Calcium Oxide Impregnated on Silica from Duck Egg Shells and Rice Husks as Heterogeneous Catalysts for Biodiesel Synthesis. Baghdad Science Journal, 20, 1976–1984. https://doi.org/10.21123/bsj.2023.7895
  14. Helwani, Z., Ramli, M., Saputra, E., Bahruddin, B., Yolanda, D., Fatra, W., Idroes, G. M., Muslem, M., Mahlia, T. M. I., & Idroes, R. (2020). Impregnation of CaO from eggshell waste with magnetite as a solid catalyst (Fe3O4/CaO) for transesterification of palm oil off-grade. Catalysts, 10(2), 1–13. https://doi.org/10.3390/catal10020164
  15. Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143
  16. Huang, J., Zou, Y., Yaseen, M., Qu, H., He, R., & Tong, Z. (2021). Fabrication of hollow cage-like CaO catalyst for the enhanced biodiesel production via transesterification of soybean oil and methanol. Fuel, 290, 119799. https://doi.org/10.1016/j.fuel.2020.119799
  17. Inambao, F. (2023). Biodiesel Standards and Quality Testing: A Review. Journal of Harbin Engineering University, 44(10), 273–295. https://harbinengineeringjournal.com/index.php/journal/article/view/1508
  18. Irwansyah, F. S., Amal, A. I., Diyanthi, E. W., Hadisantoso, E. P., Noviyanti, A. R., Eddy, D. R., & Risdiana, R. (2022). How to Read and Determine the Specific Surface Area of Inorganic Materials using the Brunauer-Emmett-Teller (BET) Method. ASEAN Journal of Science and Engineering, 4(1), 61–70. https://doi.org/10.17509/ajse.v4i1.60748
  19. Kedir, W. M., Wondimu, K. T., & Weldegrum, G. S. (2023). Optimization and characterization of biodiesel from waste cooking oil using modified CaO catalyst derived from snail shell. Heliyon, 9(5), e16475. https://doi.org/10.1016/j.heliyon.2023.e16475
  20. Kolakoti, A., Setiyo, M., & Rochman, M. L. (2022). A Green Heterogeneous Catalyst Production and Characterization for Biodiesel Production using RSM and ANN Approach. International Journal of Renewable Energy Development, 11(3), 703–712. https://doi.org/10.14710/ijred.2022.43627
  21. Krishnamurthy, K. N., Sridhara, S. N., & Ananda Kumar, C. S. (2020). Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst. Renewable Energy, 146, 280–296. https://doi.org/10.1016/j.renene.2019.06.161
  22. Lani, N. S., Ngadi, N., & Inuwa, I. M. (2020). New route for the synthesis of silica-supported calcium oxide catalyst in biodiesel production. Renewable Energy, 156, 1266–1277. https://doi.org/10.1016/j.renene.2019.10.132
  23. Lani, N. S., Ngadi, N., Yahya, N. Y., & Rahman, R. A. (2017). Synthesis, characterization and performance of silica impregnated calcium oxide as heterogeneous catalyst in biodiesel production. Journal of Cleaner Production, 146, 116–124. https://doi.org/10.1016/j.jclepro.2016.06.058
  24. Maisarah, Nurhayati, & Linggawati, A. (2020). Transesterification of Crude Palm Oil (CPO) to Biodiesel Using Heterogeneous Catalyst K-CaO from Anadara Granosa Synthesized by Sol Gel Method. Journal of Physics: Conference Series, 1655(1). https://doi.org/10.1088/1742-6596/1655/1/012035
  25. Manurung, R., Parinduri, S. Z. D. M., Hasibuan, R., Tarigan, B. H., & Siregar, A. G. A. (2023). Synthesis of nano-CaO catalyst with SiO2 matrix based on palm shell ash as catalyst support for one cycle developed in the palm biodiesel process. Case Studies in Chemical and Environmental Engineering, 7, 100345. https://doi.org/10.1016/j.cscee.2023.100345
  26. Mishra, V. K., & Goswami, R. (2018). A review of production, properties and advantages of biodiesel. Biofuels, 9(2), 273–289. https://doi.org/10.1080/17597269.2017.1336350
  27. Norul Azlin, M. Z., & Syamim Syufiana, S. (2022). The preparation and characterization of silica from coconut husk. Journal of Physics: Conference Series, 2266(1). https://doi.org/10.1088/1742-6596/2266/1/012011
  28. Nurhayati, Amri, T. A., Annisa, N. F., & Syafitri, F. (2020). The Synthesis of Biodiesel from Crude Palm Oil (CPO) using CaO Heterogeneous Catalyst Impregnated H2SO4,Variation of Stirring Speed and Mole Ratio of Oil to Methanol. Journal of Physics: Conference Series, 1655. https://doi.org/10.1088/1742-6596/1655/1/012106
  29. Ooi, H. K., Koh, X. N., Ong, H. C., Lee, H. V., Mastuli, M. S., Taufiq-Yap, Y. H., Alharthi, F. A., Alghamdi, A. A., & Mijan, N. A. (2021). Progress on modified calcium oxide derived waste-shell catalysts for biodiesel production. Catalysts, 11(2), 1–26. https://doi.org/10.3390/catal11020194
  30. Osman, N. S., & Apawe, N. (2020). Synthesis of silica (SiO2) from reproducible acid-leached oil palm frond ash (OPFA) via optimized sol-gel method. Materials Today: Proceedings, 31, 249–252. https://doi.org/10.1016/j.matpr.2020.05.330
  31. Ozor, P. A., Aigbodion, V. S., & Sukdeo, N. I. (2023). Modified calcium oxide nanoparticles derived from oyster shells for biodiesel production from waste cooking oil. Fuel Communications, 14, 100085. https://doi.org/10.1016/j.jfueco.2023.100085
  32. Pandiangan, K. D., Simanjuntak, W., Ilim, I., Satria, H., & Jamarun, N. (2019). Catalytic Performance of CaO/SiO2 Prepared from Local Limestone Industry and Rice Husk Silica. The Journal of Pure and Applied Chemistry Research, 8(2), 170–178. https://doi.org/10.21776/ub.jpacr.2019.008.02.459
  33. Pattanayak, D. K., Muduli, J., Sahu, S. S., Gouda, S., Meher, S., Dash, T., Rout, S., & Pattnaik, P. K. (2022). Production and Characterization of Amorphous Silica Nanoparticles from Coconut Shell and Coir. Letters in Applied NanoBioScience, 11(4), 4040–4049. https://doi.org/10.33263/LIANBS114.40404049
  34. Putra, M. D., Ristianingsih, Y., Jelita, R., Irawan, C., & Nata, I. F. (2017). Potential waste from palm empty fruit bunches and eggshells as a heterogeneous catalyst for biodiesel production. RSC Advances, 7(87), 55547–55554. https://doi.org/10.1039/c7ra11031f
  35. Setyawan, N., Hoerudin, & Yuliani, S. (2021). Synthesis of silica from rice husk by sol-gel method. IOP Conference Series: Earth and Environmental Science, 733(1). https://doi.org/10.1088/1755-1315/733/1/012149
  36. Simpen, I. N., Negara, I. M. S., & Ratnayani, O. (2021). KARAKTERISTIK FISIKO-KIMIA KATALIS HETEROGEN CaO-BASE DAN PEMANFAATANNYA UNTUK KONVERSI MINYAK GORENG BEKAS SECARA SINAMBUNG MENJADI BIODIESEL. Jurnal Kimia, 15(2), 188. https://doi.org/10.24843/jchem.2021.v15.i02.p09
  37. Sofyan, M. I., Mailani, P. J., Setyawati, A. W., Sulistia, S., Suciati, F., Hauli, L., Putri, R. A., Ndruru, S. T. C. L., Mawarni, R. S., Meliana, Y., Nurhayati, N., & Joelianingsih, J. (2024). Use of Sulfuric Acid-Impregnated Biochar Catalyst in Making of Biodiesel from Waste Cooking Oil via Leaching Method. Bulletin of Chemical Reaction Engineering and Catalysis, 19(1), 160–170. https://doi.org/10.9767/bcrec.20113
  38. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
  39. Wan Omar, W. N. N., & Amin, N. A. S. (2011). Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Processing Technology, 92(12), 2397–2405. https://doi.org/10.1016/j.fuproc.2011.08.009
  40. Wirawan, S. S., Solikhah, M. D., Setiapraja, H., & Sugiyono, A. (2024). Biodiesel implementation in Indonesia: Experiences and future perspectives. Renewable and Sustainable Energy Reviews, 189(PA), 113911. https://doi.org/10.1016/j.rser.2023.113911
  41. Wongjaikham, W., Kamjam, M., Wongsawaeng, D., Ngaosuwan, K., Kiatkittipong, W., Hosemann, P., & Assabumrungrat, S. (2023). Heterogeneously catalyzed palm biodiesel production in intensified fruit blender. Arabian Journal of Chemistry, 16(11), 105273. https://doi.org/10.1016/j.arabjc.2023.105273
  42. Widayat, W., Darmawan, T., Hadiyanto, H., Rosyid, R.Ar.(2017).Preparation of Heterogeneous CaO Catalysts for Biodiesel Production. Journal of Physics: Conference Series, 877(1), 012018. https://doi.org/10.1088/1742-6596/877/1/012018
  43. Wu, H., Zhang, J., Liu, Y., Zheng, J., & Wei, Q. (2014). Biodiesel production from Jatropha oil using mesoporous molecular sieves supporting K2SiO3 as catalysts for transesterification. Fuel Processing Technology, 119, 114–120. https://doi.org/10.1016/j.fuproc.2013.10.021
  44. Zuwanna, I., Riza, M., Aprilia, S., Syamsuddin, Y., & Dewi, R. (2023). Preparation and characterization of silica from rice husk ash as a reinforcing agent in whey protein isolate biocomposites film. South African Journal of Chemical Engineering, 44(August 2022), 337–343. https://doi.org/10.1016/j.sajce.2023.03.005

Last update:

No citation recorded.

Last update: 2025-04-22 13:21:19

No citation recorded.