skip to main content

Synthesis of rubber seed shell-derived porous activated carbons for promising supercapacitor application

1Department of Chemical Engineering, Lampung University, Indonesia

2Department of Chemical Engineering, Bandung Institute of Technology, Indonesia

3Department of Chemical Engineering, Sumatera Institute of Technology, Indonesia

Received: 19 Nov 2024; Revised: 5 Jan 2025; Accepted: 26 Jan 2025; Available online: 10 Feb 2025; Published: 1 Mar 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This work investigates synthesizing activated carbon obtained from rubber seed shells utilizing several activating agents (KOH, CaCl2, and ZnCl2) for supercapacitor applications. Activated carbon was produced from a rubber seed shell using hydrothermal carbonization at 275 °C for 60 minutes and a 120-minute activation treatment at 800 °C. Various activating agents pronounced impacted the pore architecture, surface area, crystallinity, and level of graphitization, which collectively determined the electrochemical characteristics of the resulting materials. Incorporating activation agents enhances the specific surface area and influences the extent of graphitization of activated carbon. The specific surface area of activated carbon products ranges from 367 to 735.2 m² g⁻¹. Further investigation through electrochemical analysis, conducted with a carefully engineered two-electrode system, demonstrated a peak electrode capacitance value of 246 F g-1 at 50 mA g-1 for an ACZn-based supercapacitor. Supercapacitor cells’ energy and power densities reached significant levels, measuring 5.47 Wh kg-1 and 246 W kg-1, respectively. The RSS-derived activated carbon-based supercapacitor exhibited remarkable longevity in a 5000-cycle test, with consistent capacitance retention and coulombic efficiency of 100.11% and 100%, respectively. This work presents a sustainable pathway for producing activated carbon electrodes, contributing to the global circular economy and demonstrating considerable industrial potential.

Fulltext View|Download
Keywords: rubber seed shell; hydrothermal carbonization; pyrolysis; supercapacitor; electrochemical performance

Article Metrics:

  1. Abdel Maksoud, M. I. A., Fahim, R. A., Shalan, A. E., Abd Elkodous, M., Olojede, S. O., Osman, A. I., Farrell, C., Al-Muhtaseb, A. H., Awed, A. S., Ashour, A. H., & Rooney, D. W. (2021). Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review. Environmental Chemistry Letters 19(1), 375–439. https://doi.org/10.1007/s10311-020-01075-w
  2. Abdul, A. H., Ramli, N., Nordin, A. N., & Abd. Wahab, M. F. (2021). Supercapacitor performance with activated carbon and graphene nanoplatelets composite electrodes, and insights from the equivalent circuit model. Carbon Trends, 5. https://doi.org/10.1016/j.cartre.2021.100101
  3. Chen, W., Li, K., Xia, M., Chen, Y., Yang, H., Chen, Z., Chen, X., & Chen, H. (2018). Influence of NH3 concentration on biomass nitrogen-enriched pyrolysis. Bioresource Technology, 263, 350–357. https://doi.org/10.1016/j.biortech.2018.05.025
  4. Cheng, F., Yang, X., Dai, S., Song, D., Zhang, S., & Lu, W. (2020). Interweaving Activated Carbon with Multi-dimensional Carbon Nanomaterials for High-performance Supercapacitors. Journal of The Electrochemical Society, 167(4), 040507. https://doi.org/10.1149/1945-7111/ab71e4
  5. Cheng, F., Yang, X., Zhang, S., & Lu, W. (2020). Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. Journal of Power Sources, 450. https://doi.org/10.1016/j.jpowsour.2019.227678
  6. Das, T., & Verma, B. (2019). High performance ternary polyaniline-acetylene black-cobalt ferrite hybrid system for supercapacitor electrodes. Synthetic Metals, 251, 65–74. https://doi.org/10.1016/j.synthmet.2019.03.025
  7. De, S., Acharya, S., Sahoo, S., & Chandra Nayak, G. (2020). Present status of biomass-derived carbon-based composites for supercapacitor application. Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems, 373–415. https://doi.org/10.1016/B978-0-12-819552-9.00012-9
  8. Deng, H., Zhu, M., Jin, T., Cheng, C., Zheng, J., & Qian, Y. (2020). One-step synthesis of nitrogen, sulphur-codoped graphene as electrode material for supercapacitor with excellent cycling stability. International Journal of Electrochemical Science, 15(1), 16–25. https://doi.org/10.20964/2020.01.13
  9. Du, W., Zhang, Z., Du, L., Fan, X., Shen, Z., Ren, X., Zhao, Y., Wei, C., & Wei, S. (2019). Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors. Journal of Alloys and Compounds, 797, 1031–1040. https://doi.org/10.1016/j.jallcom.2019.05.207
  10. Dujearic-Stephane, K., Gupta, M., Kumar, A., Sharma, V., Pandit, S., Bocchetta, P., & Kumar, Y. (2021). The effect of modifications of activated carbon materials on the capacitive performance: surface, microstructure, and wettability. Journal of Composites Science, 5(3). https://doi.org/10.3390/jcs5030066
  11. Gopalakrishnan, A., & Badhulika, S. (2020). Effect of self-doped heteroatoms on the performance of biomass-derived carbon for supercapacitor applications. Journal of Power Sources, 480. https://doi.org/10.1016/j.jpowsour.2020.228830
  12. Guan, M., Zhang, X., Wu, Y., Sun, Q., Dong, D., Zhang, X., & Wang, J. (2020). Biomass Straw Based Activated Porous Carbon Materials for High-Performance Supercapacitors. Research and Application of Materials Science, 1(2). https://doi.org/10.33142/msra.v1i2.1665
  13. Gunasekaran, S. S., Gopalakrishnan, A., Subashchandrabose, R., & Badhulika, S. (2021). Single Step, Direct Pyrolysis Assisted Synthesis of Nitrogen-Doped Porous Carbon Nanosheets Derived from Bamboo wood for High Energy Density Asymmetric Supercapacitor. Journal of Energy Storage, 42. https://doi.org/10.1016/j.est.2021.103048
  14. Guo, F., Jiang, X., Jia, X., Liang, S., Qian, L., & Rao, Z. (2019). Synthesis of biomass carbon electrode materials by bimetallic activation for the application in supercapacitors. Journal of Electroanalytical Chemistry, 844, 105–115. https://doi.org/10.1016/j.jelechem.2019.05.004
  15. Guo, N., Luo, W., Guo, R., Qiu, D., Zhao, Z., Wang, L., Jia, D., & Guo, J. (2020). Interconnected and hierarchical porous carbon derived from soybean root for ultrahigh rate supercapacitors. Journal of Alloys and Compounds, 834. https://doi.org/10.1016/j.jallcom.2020.155115
  16. Hamza, M., Li, J., Zhang, W., Zuo, Z., Liao, R., & Mei, B. A. (2022). Multi-scale electrochemical thermal model of Electric Double Layer Capacitor under galvanostatic cycling. Journal of Power Sources, 548. https://doi.org/10.1016/j.jpowsour.2022.231983
  17. Han, W., Wang, H., Xia, K., Chen, S., Yan, P., Deng, T., & Zhu, W. (2020). Superior nitrogen-doped activated carbon materials for water cleaning and energy storing prepared from renewable leather wastes. Environment International, 142. https://doi.org/10.1016/j.envint.2020.105846
  18. Hasegawa, G., Deguchi, T., Kanamori, K., Kobayashi, Y., Kageyama, H., Abe, T., & Nakanishi, K. (2015). High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances. Chemistry of Materials, 27(13), 4703–4712. https://doi.org/10.1021/acs.chemmater.5b01349
  19. Kanjana, K., Harding, P., Kwamman, T., Kingkam, W., & Chutimasakul, T. (2021). Biomass-derived activated carbons with extremely narrow pore size distribution via eco-friendly synthesis for supercapacitor application. Biomass and Bioenergy, 153. https://doi.org/10.1016/j.biombioe.2021.106206
  20. Kwiatkowski, M., & Hu, X. (2021). Analysis of the effect of conditions of preparation of nitrogen-doped activated carbons derived from lotus leaves by activation with sodium amide on the formation of their porous structure. Materials, 14(6). https://doi.org/10.3390/ma14061540
  21. Lawtae, P., & Tangsathitkulchai, C. (2021). The use of high surface area mesoporous-activated carbon from longan seed biomass for increasing capacity and kinetics of methylene blue adsorption from aqueous solution. Molecules, 26(21). https://doi.org/10.3390/molecules26216521
  22. Lemartinel, A., Castro, M., Fouché, O., De-Luca, J. C., & Feller, J. F. (2022). A Review of Nanocarbon-Based Solutions for the Structural Health Monitoring of Composite Parts Used in Renewable Energies. Journal of Composites Science,6(2). https://doi.org/10.3390/jcs6020032
  23. Lin, G., Liu, S., Qu, G., Song, Y., Li, T., Liu, F., & Hu, Y. (2021). Effect of pore size distribution in the gas diffusion layer adjusted by composite carbon black on fuel cell performance. International Journal of Energy Research, 45(5), 7689–7702. https://doi.org/10.1002/er.6350
  24. Liu, J., Deng, Y., Li, X., & Wang, L. (2016). Promising Nitrogen-Rich Porous Carbons Derived from One-Step Calcium Chloride Activation of Biomass-Based Waste for High Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 4(1), 177–187. https://doi.org/10.1021/acssuschemeng.5b00926
  25. Mei, B. A., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. (2018). Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. Journal of Physical Chemistry C, 122(1), 194–206. https://doi.org/10.1021/acs.jpcc.7b10582
  26. Mei, W., Duan, Q., Zhao, C., Lu, W., Sun, J., & Wang, Q. (2020). Three-dimensional layered electrochemical-thermal model for a lithium-ion pouch cell Part II. The effect of units number on the performance under adiabatic condition during the discharge. International Journal of Heat and Mass Transfer, 148. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119082
  27. Mitravinda, T., Nanaji, K., Anandan, S., Jyothirmayi, A., Chakravadhanula, V. S. K., Sharma, C. S., & Rao, T. N. (2018). Facile Synthesis of Corn Silk Derived Nanoporous Carbon for an Improved Supercapacitor Performance. Journal of The Electrochemical Society, 165(14), A3369–A3379. https://doi.org/10.1149/2.0621814jes
  28. Mostazo-López, M. J., Salinas-Torres, D., Ruiz-Rosas, R., Morallón, E., & Cazorla-Amorós, D. (2019). Nitrogen-doped superporous activated carbons as electrocatalysts for the oxygen reduction reaction. Materials, 12(8). https://doi.org/10.3390/ma12081346
  29. Nanda, O. P., & Badhulika, S. (2022). Biomass derived Nitrogen, Sulphur, and Phosphorus self-doped micro-meso porous carbon for high-energy symmetric supercapacitor – With a detailed study of the effect of different current collectors. Journal of Energy Storage, 56. https://doi.org/10.1016/j.est.2022.106042
  30. Ouyang, Z., Lei, Y., Chen, Y., Zhang, Z., Jiang, Z., Hu, J., & Lin, Y. (2019). Preparation and Specific Capacitance Properties of Sulfur, Nitrogen Co-Doped Graphene Quantum Dots. Nanoscale Research Letters, 14(1). https://doi.org/10.1186/s11671-019-3045-4
  31. Prakoso, T., Rustamaji, H., Yonathan, D., Devianto, H., Widiatmoko, P., Rizkiana, J., & Guan, G. (2022). The Study of Hydrothermal Carbonization and Activation Factors’ Effect on Mesoporous Activated Carbon Production From Sargassum sp. Using a Multilevel Factorial Design. Reaktor, 22(2), 59–69. https://doi.org/10.14710/reaktor.22.2.59-69
  32. Rustamaji, H., Prakoso, T., Devianto, H., & Widiatmoko, P. (2023). Parameter study in preparation of nitrogen-rich-activated carbon for supercapacitors’ application using multilevel factorial design. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.04.163
  33. Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., & Saputera, W. H. (2022). Urea nitrogenated mesoporous activated carbon derived from oil palm empty fruit bunch for high-performance supercapacitor. Journal of Energy Storage, 52. https://doi.org/10.1016/j.est.2022.104724
  34. Shabik, M. F., Begum, H., Rahman, M. M., Marwani, H. M., & Hasnat, M. A. (2020). Heterogeneous Kinetics of Thiourea Electro-Catalytic Oxidation Reactions on Palladium Surface in Aqueous Medium. Chemistry - An Asian Journal, 15(24), 4327–4338. https://doi.org/10.1002/asia.202001016
  35. Simon, P., & Gogotsi, Y. (2020). Perspectives for electrochemical capacitors and related devices. Nature Materials, 19(11), 1151–1163. https://doi.org/10.1038/s41563-020-0747-z
  36. Tagaya, T., Hatakeyama, Y., Shiraishi, S., Tsukada, H., Mostazo-López, M. J., Morallón, E., & Cazorla-Amorós, D. (2020). Nitrogen-Doped Seamless Activated Carbon Electrode with Excellent Durability for Electric Double Layer Capacitor. Journal of The Electrochemical Society, 167(6), 060523. https://doi.org/10.1149/1945-7111/ab8403
  37. Tian, X., Ma, H., Li, Z., Yan, S., Ma, L., Yu, F., Wang, G., Guo, X., Ma, Y., & Wong, C. (2017). Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. Journal of Power Sources, 359, 88–96. https://doi.org/10.1016/j.jpowsour.2017.05.054
  38. Veeman, D., Shree, M. V., Sureshkumar, P., Jagadeesha, T., Natrayan, L., Ravichandran, M., & Paramasivam, P. (2021). Sustainable Development of Carbon Nanocomposites: Synthesis and Classification for Environmental Remediation. Journal of Nanomaterials, 2021.. https://doi.org/10.1155/2021/5840645
  39. Vicentini, R., Aguiar, J. P., Beraldo, R., Venâncio, R., Rufino, F., Da Silva, L. M., & Zanin, H. (2021). Ragone Plots for Electrochemical Double-Layer Capacitors. Batteries and Supercaps, 4(8), 1291–1303. https://doi.org/10.1002/batt.202100093
  40. Wang, C., Wang, H., Dang, B., Wang, Z., Shen, X., Li, C., & Sun, Q. (2020). Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor. Renewable Energy, 156, 370–376. https://doi.org/10.1016/j.renene.2020.04.092
  41. Wang, Y., Zhang, C., Qiao, X., Mansour, A. N., & Zhou, X. (2019). Three-dimensional modeling of mediator-enhanced solid-state supercapacitors. Journal of Power Sources, 423, 18–25. https://doi.org/10.1016/j.jpowsour.2019.03.012
  42. Wolff, N., Röder, F., & Krewer, U. (2018). Model Based Assessment of Performance of Lithium-Ion Batteries Using Single Ion Conducting Electrolytes. Electrochimica Acta, 284, 639–646. https://doi.org/10.1016/j.electacta.2018.07.125
  43. Wu, X., Mu, F., & Zhao, H. (2020). Recent progress in the synthesis of graphene/CNT composites and the energy-related applications. In Journal of Materials Science and Technology, 55, 16–34. https://doi.org/10.1016/j.jmst.2019.05.063
  44. Yadav, N., Yadav, N., & Hashmi, S. A. (2021). High-Energy-Density Carbon Supercapacitors Incorporating a Plastic-Crystal-Based Nonaqueous Redox-Active Gel Polymer Electrolyte. ACS Applied Energy Materials, 4(7), 6635–6649. https://doi.org/10.1021/acsaem.1c00703
  45. Yu, J., Li, X., Cui, Z., Chen, D., Pang, X., Zhang, Q., Shao, F., Dong, H., Yu, L., & Dong, L. (2021). Tailoring in-situ N, O, P, S-doped soybean-derived porous carbon with ultrahigh capacitance in both acidic and alkaline media. Renewable Energy, 163, 375–385. https://doi.org/10.1016/j.renene.2020.08.066
  46. Zhang, J. Y., Wang, X. T., Ali, S., & Liu, F. G. (2019). Analyzing electrical performance and thermal coupling of supercapacitor assembled using phosphorus-doped porous carbon/graphene composite. Electronics (Switzerland), 8(2). https://doi.org/10.3390/electronics8020254
  47. Zhang, S., Wang, K., Chen, H., Liu, H., Yang, L., Chen, Y., & Li, H. (2022). ZIF-67 derived in-situ grown N–Co3S4-GN/CNT interlinked conductive networks for high-performance especially cycling stable supercapacitors. Carbon, 194, 10–22. https://doi.org/10.1016/j.carbon.2022.03.054
  48. Zhao, J., & Burke, A. F. (2021). Review on supercapacitors: Technologies and performance evaluation. In Journal of Energy Chemistry, 59, 276–291. https://doi.org/10.1016/j.jechem.2020.11.013
  49. Zhou, W., Liu, Z., Chen, W., Sun, X., Luo, M., Zhang, X., Li, C., An, Y., Song, S., Wang, K., & Zhang, X. (2023). A Review on Thermal Behaviors and Thermal Management Systems for Supercapacitors. Batteries, 9(2). https://doi.org/10.3390/batteries9020128

Last update:

No citation recorded.

Last update: 2025-04-22 03:54:48

No citation recorded.