skip to main content

The implementation of ozone cleaning on two-step texturization of p-type silicon wafer

1Advanced Solar Cell Fabrication Laboratory, Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Malaysian Meteorological Department, Jalan Sultan, 46667 Petaling Jaya, Selangor, Malaysia

Received: 7 Nov 2024; Revised: 6 Jan 2025; Accepted: 25 Jan 2025; Available online: 7 Feb 2025; Published: 1 Mar 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study investigates the ozone treatment process that can be utilized across various fabrication stages to enhance the performance of silicon solar cells. The effectiveness of this treatment on p-type silicon surfaces was examined through the application of ozone dissolved in deionized water (DIO3) and the ultraviolet-ozone (UVO3) cleaning process prior to the two-step texturization procedure. The two-step texturization procedure applied in this work eliminates the use of silicon nitride (SiN) as an anti-reflective coating (ARC) layer for the elimination of toxic gases and leads to the environment-friendly fabrication of solar cells. An alternative to RCA, DIO3 and UVO3 represent promising chemical options for cleaning applications to eliminate the use of hazardous chemicals. It was discovered that the surface with the DIO3 treatment for 10 minutes resulted in a significantly enhanced surface quality on the p-type silicon wafer. In the DIO₃ cleaning, ozone is dissolved in deionized water  to create a highly oxidative solution capable of removing organic contaminants and particles effectively. In contrast, the UVO₃ treatment harnesses ultraviolet light to synthesize ozone directly on the wafer's surface, promoting the degradation of organic residues into volatile compounds, including CO₂ and H₂O. According to field emission scanning electron microscope (FESEM) micrographs and UV-visible spectrometer (UV-Vis) measurements, the textured wafer with DIO3 treatment improves the surface morphology and decreases the front surface reflection. As a result, the 10 minutes DIO3 treatments were reported optimal; the range size and height of the pyramid formed were 1.9–2.0 µm and 0.8–1.5 µm, offering a lower reflectivity value of below 12%, respectively. Results from the Atomic Force Microscope  (AFM) also confirm that the increase in average surface roughness from 203.65 nm to 300.27 nm was expected to improve light absorption. Moreover, this methodology leads to a considerable reduction in surface damage and is applicable to the silicon texturization process utilized in solar cell manufacturing.

Fulltext View|Download
Keywords: DIO3 treatment; two-step texturization; p-type wafer; surface morphology; reflectance
Funding: Geran Universiti Penyelidikan (GUP-2020-073); Universiti Kebangsaan Malaysia (UKM)

Article Metrics:

  1. Akila, B. S., Vaithinathan, K., Balaganapathi, T., Vinoth, S., & Thilakan, P. (2017). Investigations on the correlation between surface texturing histogram and the spectral reflectance of (100) Crystalline Silicon Substrate textured using anisotropic etching. Sensors and Actuators, A: Physical, 263, 445–450. https://doi.org/10.1016/j.sna.2017.06.021
  2. Al-Husseini, A. M., & Lahlouh, B. (2019). Influence of pyramid size on reflectivity of silicon surfaces textured using an alkaline etchant. Bulletin of Materials Science, 42(4). https://doi.org/10.1007/s12034-019-1848-7
  3. Bakhshi, S., Zin, N., Ali, H., Wilson, M., Chanda, D., Davis, K. O., & Schoenfeld, W. V. (2018). Simple and versatile UV-ozone oxide for silicon solar cell applications. Solar Energy Materials and Solar Cells, 185, 505–510. https://doi.org/10.1016/j.solmat.2018.06.006
  4. Bolon, D. A., & Kunz, C. O. (1972). Ultraviolet depolymerization of photoresist polymers. Polymer Engineering & Science, 12(2), 109–111. https://doi.org/10.1002/pen.760120206
  5. Chen, G. (1999). The Applications of DI-O3 Water on Wafer Surface Preparation. International Conference on Wafer Rinsing. http://www.akrionsystems.com/wp-content/uploads/2012/01/The-Application-of-DIO3-Water-on-Wafer-Surface-Preparation.pdf
  6. Chen, W., Dhayagude, T., Chaparala, P., Demirlioglu, E., Shenasa, M., Bearda, T., Arnauts, S., & Meuris, M. (1997). RCA and IMEC/SC2 clean: Metallic immunity and gate oxide integrity. Materials Research Society Symposium - Proceedings, 477, 225–232. https://doi.org/10.1557/proc-477-225
  7. Chu, C. L., Lu, T. Y., & Fuh, Y. K. (2020). The suitability of ultrasonic and megasonic cleaning of nanoscale patterns in ammonia hydroxide solutions for particle removal and feature damage. Semiconductor Science and Technology, 35(4). https://doi.org/10.1088/1361-6641/ab675d
  8. Chu, M., Khokhar, M. Q., Kim, Y., Quddamah Khokhar, M., Yousuf, H., Fan, X., Han, S., Dhungel, S. K., & Yi, J. (2024). Review of the Silicon Oxide and Polysilicon Layer as the Passivated Contacts for TOPCon Solar Cells. https://doi.org/10.4313/JKEM.2023.36.3.4
  9. Chuchvaga, N. A., Kislyakova, N. M., Tokmoldin, N. S., Rakymetov, B. A., & Serikkanov, A. S. (2020). Problems Arising from Using KOH–IPA Etchant to Texture Silicon Wafers. Technical Physics, 65(10), 1685–1689. https://doi.org/10.1134/S1063784220100047
  10. Das, M., & Sarkar, D. (2016). Morphological and optical properties of n-type porous silicon: Effect of etching current density. Bulletin of Materials Science, 39(7), 1671–1676. https://doi.org/10.1007/s12034-016-1332-6
  11. Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Okolie, J. A., Mackay, W., Rateb, M., & Yaseen, M. (2023). Ozone application in different industries: A review of recent developments. In Chemical Engineering Journal, 454. https://doi.org/10.1016/j.cej.2022.140188
  12. Fang, H., Li, X., Song, S., Xu, Y., & Zhu, J. (2008). Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology, 19(25). https://doi.org/10.1088/0957-4484/19/25/255703
  13. Fashina, A., Adama, K., Abdullah, L., Ani, C., Oyewole, O., Asare, J., & Anye, V. (2018). Atomic force microscopy analysis of alkali textured silicon substrates for solar cell applications. International Journal of Physical Research, 6(1), 13–17. https://doi.org/10.14419/ijpr.v6i1.8795
  14. Fink, C. K., Nakamura, K., Ichimura, S., & Jenkins, S. J. (2009). Silicon oxidation by ozone. Journal of Physics Condensed Matter, 21(18). https://doi.org/10.1088/0953-8984/21/18/183001
  15. Fu, T., Zhang, Y., Chen, L., Shen, F., & Zhu, J. (2024). Micromorphology evolution, growth mechanism, and oxidation behaviour of the silicon-rich MoSi2 coating at 1200 °C in air. Journal of Materials Research and Technology, 29, 491–503. https://doi.org/10.1016/j.jmrt.2024.01.112
  16. Gao, M. (2021). UV-Ozone Oxide Treatments for High-Efficiency Silicon Photovoltaic Devices. https://stars.library.ucf.edu/etd2020/504
  17. Garnett, E., & Yang, P. (2010). Light trapping in silicon nanowire solar cells. Nano Letters, 10(3), 1082–1087. https://doi.org/10.1021/nl100161z
  18. Jiang, Y., Zhang, X., Wang, F., & Zhao, Y. (2015). Optimization of a silicon wafer texturing process by modifying the texturing temperature for heterojunction solar cell applications. RSC Advances, 5(85), 69629–69635. https://doi.org/10.1039/c5ra09739h
  19. Ju, M., Balaji, N., Park, C., Thanh Nguyen, H. T., Cui, J., Oh, D., Jeon, M., Kang, J., Shim, G., & Yi, J. (2016). The effect of small pyramid texturing on the enhanced passivation and efficiency of single c-Si solar cells. RSC Advances, 6(55), 49831–49838. https://doi.org/10.1039/c6ra05321a
  20. Jun, M. C., Kim, Y. S., Han, M. K., Kim, J. W., & Kim, K. B. (1995). Polycrystalline silicon oxidation method improving surface roughness at the oxide/polycrystalline silicon interface. Applied Physics Letters, 2206. https://doi.org/10.1063/1.113948
  21. K, A. K., & O, E. J. (2023). Experimental Analysis of Anisotropic Surface Texturing Process of Crystalline Silicon Wafers. Journal of Materials Engineering, Structures and Computation, 2(1), 2023–2024. https://doi.org/10.5281/zenodo.7759299
  22. Kart, D., Gürel, D. B., Kayaardi, S., & Gurel, D. B. (2018). Cold Plasma and Ultrasound Applications in Cleaning of Food Contact Surfaces. International Journal of Scientific and Technological Research, 4(8). https://www.iiste.org/Journals/index.php/JSTR/article/view/44469
  23. Kegel, J., Angermann, H., Stürzebecher, U., & Stegemann, B. (2013). IPA-free texturization of n-type Si wafers: Correlation of optical, electronic and morphological surface properties. Energy Procedia, 38, 833–842. https://doi.org/10.1016/j.egypro.2013.07.353
  24. Kern, W., & Puotinen, D. A. (1970). Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology. RCA Review, A Tehcnical Journal ,31. https://garfield.library.upenn.edu/classics1983/A1983QD90200001.pdf
  25. Khanna, A., Basu, P. K., Filipovic, A., Shanmugam, V., Schmiga, C., Aberle, A. G., & Mueller, T. (2015). Influence of random pyramid surface texture on silver screen-printed contact formation for monocrystalline silicon wafer solar cells. Solar Energy Materials and Solar Cells, 132, 589–596. https://doi.org/10.1016/j.solmat.2014.10.018
  26. Li, S., Li, Z., Wan, X., & Chen, Y. (2023). Recent progress in flexible organic solar cells. eScience, 3(1). https://doi.org/10.1016/j.esci.2022.10.010
  27. Menna, P., Di Francia, G., & Ferrara, V. La. (1995). Porous silicon in solar cells: A review and a description of its application as an AR coating. Solar Energy Materials and Solar Cells, 37. https://doi.org/10.1016/0927-0248(94)00193-6
  28. Moldovan, A., Birmann, K., Rentsch, J., Zimmer, M., Gitte, T., & Fittkau, J. (2013). Combined ozone/HF/HCl based cleaning and adjusted emitter etch-back for silicon solar cells. Solid State Phenomena, 195, 305–309. https://doi.org/10.4028/www.scientific.net/SSP.195.305
  29. Montesdeoca-Santana., A., Orive, A. G., Creus, A. H., González-Díaz, B., Borchert, D., & Guerrero-Lemus, R. (2013). Microscopy analysis of pyramid formation evolution with ultra-low concentrated Na2CO3/NaHCO3 Solution on (100) Si for Solar Cell Application. Microscopy and Microanalysis, 19(2), 285–292. https://doi.org/10.1017/S1431927612014237
  30. Neutens, P., Rutowska, M., Van Roy, W., Jansen, R., Buja, F., & Van Dorpe, P. (2018). Influence of UV Light on PECVD Silicon Nitride Waveguide Propagation Loss. IEEE International Conference on Group IV Photonics GFP, 2018-Augus, 121–122. https://doi.org/10.1109/GROUP4.2018.8478749
  31. Norizam, M., Daud, M., Firdaus, M., Noh, M., Arzaee, N. A., Aadenan, A., Hakim, D., Hisham, B., Athir, M., Anuar, M., Ibrahim, M. A., Sepeai, S., Asri, M., & Teridi, M. (2024). Electrochemical induced morphological formation and optical properties of p-type silicon wafer. Bull Mater Sci 47, 268. https://doi.org/10.1007/s12034-024-03349-3
  32. Oni, A. M., Mohsin, A. S. M., Rahman, M. M., & Hossain Bhuian, M. B. (2024). A comprehensive evaluation of solar cell technologies, associated loss mechanisms, and efficiency enhancement strategies for photovoltaic cells. In Energy Reports (Vol. 11, pp. 3345–3366). Elsevier Ltd. https://doi.org/10.1016/j.egyr.2024.03.007
  33. Özçam, A. E., Efimenko, K., & Genzer, J. (2014). Effect of ultraviolet/ozone treatment on the surface and bulk properties of poly(dimethyl siloxane) and poly(vinylmethyl siloxane) networks. Polymer, 55(14), 3107–3119. https://doi.org/10.1016/j.polymer.2014.05.027
  34. Panagoda, L. P. S. S., Sandeepa, R. A. H. T., Perera, W. A. V. T., Sandunika, D. M. I., Siriwardhana, S. M. G. T., Alwis, M. K. S. D., & Dilka, S. H. S. (2023). Advancements In Photovoltaic (Pv) Technology for Solar Energy Generation. J. Res. Technol. Eng 4(3). https://www.researchgate.net/publication/372364724
  35. Park, H., Ju, M., Khokhar, M. Q., Cho, E. C., Kim, Y., Cho, Y., & Yi, J. (2020). Surface Modifications for Light Trapping in Silicon Heterojunction Solar Cells: A Brief Review. Transactions on Electrical and Electronic Materials, 21(4), 349–354. https://doi.org/10.1007/s42341-020-00203-1
  36. Park, H., Kwon, S., Lee, J. S., Lim, H. J., Yoon, S., & Kim, D. (2009). Improvement on surface texturing of single crystalline silicon for solar cells by saw-damage etching using an acidic solution. Solar Energy Materials and Solar Cells, 93(10), 1773–1778. https://doi.org/10.1016/j.solmat.2009.06.012
  37. Raji, M., Venkatachalam, K., Manikkam, S., & Perumalsamy, R. (2022). Surface Texturing of the Multi-Crystalline Silicon Wafers Using Novel Non-Toxic Chemical Composition. Silicon, 14(15), 9987–9995. https://doi.org/10.1007/s12633-022-01759-8
  38. Ruzyllo, J., Pintchovski, F., Price, J. B., & Tobin, P. J. (1990). The Evolution of Silicon Wafer Cleaning Technology. J. Electrochem. Soc, 137, 1887–1892. https://doi.org/10.1149/1.2086825
  39. Zhang, Y., Wang, B., Li, X., Gao, Z., Zhou, Y., Li, M., Zhang, D., Tao, K., Jiang, S., Ge, H., Xiao, S., & Jia, R. (2021). A novel additive for rapid and uniform texturing on high-efficiency monocrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 222. https://doi.org/10.1016/j.solmat.2020.110947
  40. Zou, S., Xu, L., Wu, C., Ding, J., Zhu, L., Sun, H., Ye, X., Wang, X., Zhang, X., & Su, X. (2021). Metal-catalyzed chemical etching using DIO3 as a hole injection agent for efficient submicron-textured multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 227. https://doi.org/10.1016/j.solmat.2021.111104

Last update:

No citation recorded.

Last update: 2025-04-23 06:01:40

No citation recorded.