skip to main content

Aluminum, nickel, and manganese supported on bentonite for conversion of ethanol to gasoline

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang, Indonesia

2Research Center for Chemistry, National Research and Innovation Agency, Kawasan PUSPIPTEK Serpong, South Tangerang, Indonesia

3Jakarta Intercultural School, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta, Indonesia

Received: 10 Nov 2024; Revised: 26 Jan 2025; Accepted: 20 Feb 2025; Available online: 27 Feb 2025; Published: 1 Mar 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The potential of bentonite as a catalyst is rapidly growing, isomorphic substitution in its interlayer allows for cation exchange and facilitates modification to enhance its catalytic properties. The catalytic performance of bentonite can be improved through the insertion of pillared clays (PILC) into its interlayer structure using Al2O3, NiO, and MnO metal oxide alloys. This research aims to develop and study a modified bentonite catalyst, focusing on its physicochemical changes,as well as its activity and selectivity in the conversion of ethanol to biogasoline. The synthesis of oxide pillars on bentonite was carried out at a consistent metal/bentonite mole ratio of 10 mmol/g, with a mixed metal composition of 1:1. The results showed anexpansion of interlayer distance, as measured by X-ray diffraction (XRD), which increased in all catalysts compared to natural bentonite6,350 (13.94 Å). Surface Area Analyzer (SAA) analysis, revealed that Al/Bentonite exhibited the highest surface area at187.84 m2/g. Total acidity  analyzed, using Temperature Programmed Desorption-Ammonia (TPD-NH3), was found to be 2.33 mmol/g, with Al-Ni/Bentonite showing the highest acidity. Thermal stability, tested throughThermogravimetric Analysis (TGA), indicated that catalysts containing Al and Ni demonstrated the highest stability. The catalytic activity test showed that the Al/bentonite catalyst achieved the highest ethanol conversion rate of68.64% and a catalyst selectivity of 51.70%, as determined byGas Chromatography-Flame Ionized Detector (GC-FID) analysis. These results indicate that the pillarization of bentonite with Al2O3, NiO, and MnO oxides significantly improved its physicochemical properties, activity, and selectivity in the catalytic conversion of ethanol to biogasoline compared to natural bentonite.

Fulltext View|Download
Keywords: Catalysis; Pillared Clay (PILC); Bimetallic oxide; Ethanol; Gasoline
Funding: BRIN-LPDP

Article Metrics:

  1. Agustian, E., Rachmawati, A., Purba, N. D. E., Rinaldi, N., & Juwono, A. L. (2021). Effect of ultrasonic treatment on the preparation of zirconia pillared bentonite as a catalyst. Journal of Physics: Conference Series, 1951(1), 012017. https://doi.org/10.1088/1742-6596/1951/1/012017
  2. Aid, A., Andrei, R. D., Amokrane, S., Cammarano, C., Nibou, D., & Hulea, V. (2017). Ni-exchanged cationic clays as novel heterogeneous catalysts for selective ethylene oligomerization. Applied Clay Science, 146, 432–438. https://doi.org/10.1016/j.clay.2017.06.034
  3. Alzamel, M. (2022). Swelling ability and behaviour of bentonite-based materials for deep repository engineered barrier systems: Influence of physical, chemical and thermal factors. Journal of Rock Mechanics and Geotechnical Engineering
  4. Bahranowski, K., Włodarczyk, W., Wisła-Walsh, E., Gaweł, A., Matusik, J., Klimek, A., Gil, B., Michalik-Zym, A., Dula, R., Socha, R. P., & Serwicka, E. M. (2015). [Ti,Zr]-pillared montmorillonite – A new quality with respect to Ti- and Zr-pillared clays. Microporous and Mesoporous Materials, 202, 155–164. https://doi.org/10.1016/j.micromeso.2014.09.055
  5. Binitha, N. N., & Sugunan, S. (2006). Preparation, characterization and catalytic activity of titania pillared montmorillonite clays. Microporous and Mesoporous Materials, 93(1–3), 82–89. https://doi.org/10.1016/j.micromeso.2006.02.005
  6. Cardona, Y., Korili, S. A., & Gil, A. (2021). Understanding the formation of Al13 and Al30 polycations to the development of microporous materials based on Al13-and Al30-PILC montmorillonites: a review. Applied Clay Science, 203, 105996. https://doi.org/10.1016/j.clay.2021.105996
  7. Darmawan, A., Fuad, K., & Azmiyawati, C. (2019). Synthesis of chromium pillared clay for adsorption of methylene blue. IOP Conference Series: Materials Science and Engineering, 509, 012003. https://doi.org/10.1088/1757899X/509/1/012003
  8. Daroughegi Mofrad, B., Rezaei, M., & Hayati-Ashtiani, M. (2019). Preparation and characterization of Ni catalysts supported on pillared nanoporous bentonite powders for dry reforming reaction. International Journal of Hydrogen Energy, 44(50), 27429–27444. https://doi.org/10.1016/j.ijhydene.2019.08.194
  9. Fatimah, I., Narsito, N., & Wijaya, K. (2011). Effect of Aluminium Content in Aluminium Pillared Montmorillonite on Its Surface Acidity Properties. ITB Journal of Sciences, 43(2), 123–138. https://doi.org/10.5614/itbj.sci.2011.43.2.5
  10. Furimsky, E. (2000). Catalytic hydrodeoxygenation. Applied Catalysis A: General, 199(2), 147–190. https://doi.org/10.1016/S0926-860X(99)00555-4
  11. Gandía, L. M., Vicente, M. A., Oelker, P., Grange, P., & Gil, A. (1998). Preparation and characterization of manganese- and samarium-manganese-alumina pillared montmorillonites. Reaction Kinetics and Catalysis Letters, 64(1), 145–151. https://doi.org/10.1007/BF02475382
  12. Goldemberg, J. (2007). Ethanol for a Sustainable Energy Future. Science, 315(5813), 808–810. https://doi.org/10.1126/science.1137013
  13. Galeano, L.-A., Vicente, M. Á., & Gil, A. (2014). Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catalysis Reviews, 56(3), 239–287. https://doi.org/10.1080/01614940.2014.904182
  14. Hamouda, A. S., Acharjee, P., Abdelrahman, A., Radwan, A. M., Zaki, A. H., Farghali, A., Goel, A. (2021). Catalytic thermochemical cracking of polyethylene over nanocomposite bentonite clay. IOP Conference Series: Materials Science and 104 Engineering, 1046(1), 012022. https://doi.org/10.1088/1757-899X/1046/1/012022
  15. He, Y., Jiang, D. B., Chen, J., Jiang, D. Y., & Zhang, Y. X. (2018). Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. Journal of Colloid and Interface Science, 510, 207–220. https://doi.org/10.1016/j.jcis.2017.09.066
  16. Huang, H., Fang, T., Liu, H., Zhou, H., Chen, D., Jia, W., Zhu, Z. (2022). Ethanol-to-hydrocarbons reaction over HZSM-5: Enhanced ethanol/ethylene into C3+ hydrocarbons conversion by pristine external Brönsted acid sites. Microporous and Mesoporous Materials, 335, 111824. https://doi.org/10.1016/j.micromeso.2022.111824
  17. Jiang, Y., Li, X., Qin, Z., & Ji, H. (2016). Preparation of Ni/bentonite catalyst and its applications in the catalytic hydrogenation of nitrobenzene to aniline. Chinese Journal of Chemical Engineering, 24(9), 1195–1200. https://doi.org/10.1016/j.cjche.2016.04.030
  18. Johansson, R., Hruby, S. L., Rass-Hansen, J., & Christensen, C. H. (2009). The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts. Catalysis Letters, 127(1–2), 1–6. https://doi.org/10.1007/s10562-008-9711-2
  19. Kumar Dutta, D., Jyoti Borah, B., & Pollov Sarmah, P. (2015). Recent Advances in Metal Nanoparticles Stabilization into Nanopores of Montmorillonite and Their Catalytic Applications for Fine Chemicals Synthesis. Catalysis Reviews, 57(3), 257–305. https://doi.org/10.1080/01614940.2014.1003504
  20. Li, D., Zeng, L., Li, X., Wang, X., Ma, H., Assabumrungrat, S., & Gong, J. (2015). Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Applied Catalysis B: Environmental, 176–177, 532–541. https://doi.org/10.1016/j.apcatb.2015.04.020
  21. Lu, X., Gu, F., Liu, Q., Gao, J., Liu, Y., Li, H., Jia, L., Xu, G., Zhong, Z., & Su, F. (2015). VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation. Fuel Processing Technology, 135, 34–46. https://doi.org/10.1016/j.fuproc.2014.10.009
  22. Okoye, I. P., & . C. O. (2011). Synthesis and Characterization of Titanium Pillared Bentonite Clay Mineral. Research Journal of Applied Sciences, 6(7), 443–446. https://doi.org/10.3923/rjasci.2011.443.446
  23. Parangi, T., & Mishra, M. K. (2020). Solid Acid Catalysts for Biodiesel Production. Comments on Inorganic Chemistry, 40(4), 176–216. https://doi.org/10.1080/02603594.2020.1755273
  24. Peng, S.-Y., Xu, Z.-N., Chen, Q.-S., Wang, Z.-Q., Chen, Y., Lv, D.-M., Lu, G., & Guo, G.-C. (2014). MgO: An excellent catalyst support for CO oxidative coupling to dimethyl oxalate. Catalysis Science & Technology, 4(7), 1925–1930. https://doi.org/10.1039/C4CY00245H
  25. Rafiani, A., Aulia, F., Dwiatmoko, A. A., Rinaldi, N., Nurhasni, & Widjaya, R. R. (2020). Studies on Nickel-based Bimetallic Catalysts for the Hydrodeoxygenation of Stearic Acid. IOP Conference Series: Materials Science and Engineering, 722(1), 012001. https://doi.org/10.1088/1757-899X/722/1/012001
  26. Ramadhaniati, D., Saridewi, N., Dwiatmoko, A. A., Rinaldi, N., Ramdani, D., Putri, A. M. H., Widjaya R. R. (2023). Aluminium and zirconium pillared bentonite for ethanol to gasoline conversion process. AIP Conf. Proc. 2902, 030001. https://doi.org/10.1063/5.0173147
  27. Rinaldi, N., Purba, N. D. E., Kristiani, A., Agustian, E., Widjaya, R. R., & Dwiatmoko, A. A. (2023). Bentonite pillarization using sonication in a solid acid catalyst preparation for the oleic acid esterification reaction. Catalysis Communications, 174, 106598. https://doi.org/10.1016/j.catcom.2022.106598
  28. Rinaldi, R., & Schüth, F. (2009). Design of solid catalysts for the conversion of biomass. Energy & Environmental Science, 2(6), 610–626. https://doi.org/10.1039/B902668A
  29. Rodiansono, Trisunaryanti, W., Triyono. 2007. The influence of loading of Ni and Nb2O5 to characters of Ni/Zeolite and Ni/Zeolite-Nb2O5 catalysts. Journal of Sains dan Kimia Terapan, 1, 20-28
  30. Salerno, P., Mendioroz, S., & López Agudo, A. (2004). Al-pillared montmorillonite-based NiMo catalysts for HDS and HDN of gas oil: Influence of the method and order of Mo and Ni impregnation. Applied Catalysis A: General, 259(1), 17–28. https://doi.org/10.1016/j.apcata.2003.09.019
  31. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (2008). Reporting Physisorption Data for Gas/Solid Systems. In G. Ertl, H. Knözinger, F. Schüth, & J. Weitkamp (Eds.), Handbook of Heterogeneous Catalysis (1st ed., pp. 1217–1230). Wiley. https://doi.org/10.1002/9783527610044.hetcat0065
  32. Sudarma, N., & Parwata, I. M. O. A. (2017). Determination Ethanol In Arak With Gas Chromatography. Bali Medika Jurnal, 4(2), 126–135. https://doi.org/10.36376/bmj.v4i2.10
  33. Sun, J., & Wang, Y. (2014). Recent Advances in Catalytic Conversion of Ethanol to Chemicals. ACS Catalysis, 4(4), 1078–1090. https://doi.org/10.1021/cs4011343
  34. Sun Kou, M. R., Mendioroz, S., & Muñoz, V. (2000). Evaluation of the Acidity of Pillared Montmorillonites by Pyridine Adsorption. Clays and Clay Minerals, 48(5), 528–536. https://doi.org/10.1346/CCMN.2000.0480505
  35. Supeno, M., & Siburian, R. (2018). Role of TiO 2 pillared bentonite-Co catalyst Ni to convert glucose hydrogenation to be sorbitol. Journal of Physics: Conference Series, 1116, 042038. https://doi.org/10.1088/1742-6596/1116/4/042038
  36. Suseno, A. (2019). Hydrocracking of palm oil to gasoline on bimetallic Ni-Cu/zirconia pillared bentonite. IOP Conference Series: Materials Science and Engineering, 509, 012005. https://doi.org/10.1088/1757-899X/509/1/012005
  37. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
  38. Wang, F., Kang, X., Zhou, M., Yang, X., Gao, L., & Xiao, G. (2017). Sn and Zn modified HZSM-5 for one-step catalytic upgrading of glycerol to value-added aromatics: Synergistic combination of impregnated Sn particles, ALD introduced ZnO film and HZSM-5 zeolite. Applied Catalysis A: General, 539, 80–89. https://doi.org/10.1016/j.apcata.2017.04.005
  39. Wen, K., Wei, J., He, H., Zhu, J., & Xi, Y. (2019). Keggin-Al30: An intercalant for Keggin-Al30 pillared montmorillonite. Applied Clay Science, 180, 105203. https://doi.org/10.1016/j.clay.2019.105203
  40. Widjaya, R. R., Saridewi, N., Putri, A. A., Rinaldi, N., & Dwiatmoko, A. A. (2021). Fe-Cr pillared clay as catalysts for the ethanol to gasoline conversion. IOP Conference Series: Materials Science and Engineering, 1011(1), 012008. https://doi.org/10.1088/1757-899X/1011/1/012008
  41. Widjaya, R. R., Soegijono, B., & Rinaldi, N. (2012). Characterization of Cr/Bentonite and HZSM-5 Zeolite as Catalysts for Ethanol Conversion to Biogasoline. MAKARA of Science Series, 16(1). https://doi.org/10.7454/mss.v16i1.1283
  42. Yanti, F. M., Valentino, N., Juwita, A.R., Murti, S.D., Pertiwi, A., Rahmawati, N., Rini, T.P., Sholihah, A., Prasetyo, J., Saputra, H., Iguchi, S., Noda R. (2020). Methanol production from biomass syngas using Cu/ZnO/Al2O3 catalyst. AIP Conf. Proc. 2223, 020006. https://doi.org/10.1063/5.0000870

Last update:

No citation recorded.

Last update: 2025-04-22 07:23:10

No citation recorded.