skip to main content

Energy resource development in the DRC: A scenario planning for hydroelectric potential development by 2050 based on OSeMOSYS

1Regional Water School , University of Kinshasa , Kinshasa, Democratic Republic of the Congo

2Department of Engineering Sciences, AUMT, Brazzaville Campus, Congo

3Center Kitsisa Khonde for Studies and Research on Renewable Energies , Institute of Applied Techniques, Kinshasa, Democratic Republic of the Congo

4 Department of Business Administration, College of Science and Human Studies, Hotat Sudair, Majmaah University, Saudi Arabia

View all affiliations
Received: 11 Feb 2025; Revised: 17 Apr 2025; Accepted: 8 May 2025; Available online: 30 May 2025; Published: 1 Jul 2025.
Editor(s): Grigorios Kyriakopoulos
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Energy planning is a privileged scientific tool, enabling quantified analyses of the energy future of countries or regions of the world. These analyses provide a scientific basis for energy policies and implementation strategies. The Democratic Republic of Congo (DRC), despite its considerable hydroelectric potential, makes little use of its resources due to various challenges, leaving a large part of the population without access to electricity, which hampers community and economic development. This article analyzes the opportunities for developing the hydroelectric potential of the DRC up to 2050. Using OSeMOSYS (Open-Source Energy Modelling System), prospective modelling was carried out to assess the technical, economic and environmental impacts of an ambitious energy scenario centered on hydropower (Scenario HYDRO).  The study develops an energy modelling approach for the DRC, considering demand, supply and energy policies, based on reliable data and aimed at optimizing the use of resources, in particular hydroelectric potential. The results indicate a potential installed capacity of 23 GW by 2050, dominated by hydropower (83%). This scenario meets the growing needs of national electrification, with 70% of the energy designated for the residential sector. The study highlights a significant reduction in CO2 emissions, estimated at 1,229 Mt cumulative by 2050. However, achieving these targets will require around USD 100 billion in investment. The results provide a sound basis for the development of energy policies in the DRC that will promote universal access to sustainable energy, reduce carbon emissions, reduce pressure on forests and ensure energy security. The results of this study recommend massive investment in hydropower, standardization of the electricity sector and improved data collection to achieve universal electrification and significantly reduce CO2 emissions in the DRC by 2050.

Fulltext View|Download
Keywords: Energy modelling; OSeMOSYS; hydropower; Democratic Republic of Congo; energy transition; CO2 emissions reduction

Article Metrics:

  1. ARE. (2023). Rapport annuel 2022. Autorité de Régulation du secteur de l'Electricité, République Démocratique du Congo. Autorité de Régulation du secteur de l'Electricité. https://are.gouv.cd/bfd_download/rapport-annuel-2023/
  2. Arntzen, J., & Luwesi, C. (2018). Innovative water infrastructure financing in the SADC region. Johannesburg: SWF and WaterNet: Final SADC Water Fund Training Workshop Report. http://waternet.org/ (Accessed on 03.08.2018)
  3. Artelia, S.A, I.-C., & Sher. (2021). Etude de priorisation de cartographie des sites hydroélectriques et solaires Photovoltaïques en République Démocratique du Congo. Banque Mondiale
  4. Barnes, T., Shivakumar, A., Brinkerink, M., & Niet, T. (2022, October 14). OSeMOSYS Global, an open-source, open data global electricity system model generator. Scientific DATA. https://doi.org/10.1038/s41597-022-01737-0
  5. BCC. (2023). Bulletin mensuel d'informations statistiques. Kinshasa: Banque Centrale du Congo
  6. Carla, C., & Allington Lucy, P. L. (2021, 5 13). CCG Starter Data Kit: Democratic Republic of Congo. https://doi.org/10.5281/zenodo.4756669
  7. Council, N. R. (2010). Hidden Costs of Energy : Unpriced Consequences of Energy Production and Use. National Academies Press
  8. Eikeland, P. O., & Skjærseth, J. B. (2016). Evolution of EU climate and energy policies. Dalam Linking EU Climate and Energy Policies. https://doi.org/10.4337/9781785361289.00009
  9. Fattori, F., Anglani, & N., D. A. (2016). Proposing an open-source model for unconventional participation to energy planning. Energy Research & Social Science, 12-33. https://doi.org/10.1016/j.erss.2016.02.005
  10. FMI. (2022, Décembre). Plaidoyer pour des énergies propres. (F. M. International, Penyunt.) La ruée sur l'énergie, 59, hal. 68. https://www.imf.org/fandd
  11. Fragnière, E., Kanala, R., Moresino, F., & Smeureanu, A. R. (2017). Coupling technoeconomic-economic energy models with behavioral approaches. Operational Research, 633-647. https://doi.org/10.1007/s12351-016-0246-9
  12. GHGP, G. H. (2024). Global Warning Potential values. Dipetik 1 4, 2024, dari https://ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20%28Feb%2016%202016%29_1.pdf
  13. Gnassou, L. (2019). Addressing renewable energy conundrum in the DR Congo: Focus on Grand Inga hydropower dam project. Energy Strategy Reviews 26,100400. https://doi.org/10.1016/j.esr.2019.100400
  14. Hafemeister, D., Kammen, D., Levi, B. G., & Schwartz, a. P. (2011). Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use. AIP Conference Proceedings, 165–182. https://doi.org/10.1063/1.3653850
  15. Hlopov, O. (2019). Renewable Energy in Global Energy Policies US dominance. SCIENTIFIC DEVELOPMENT TRENDS AND EDUCATION. https://doi.org/10.18411/lj-04-2019-76
  16. IEA. (2019). Africa Energy Outlook 2019 : Apercus par Pays : République Démocratique du Congo. Internatinal Energy Agency. https://doi.org/www.iea.org/reports/africa-energy-outlook-2019
  17. IEA. (2022). Outlook for electricity – World Energy Outlook 2022 – Analysis. (IEA) https://www.iea.org/reports/world-energy-outlook-2022/outlook-for-electricity
  18. IEA. (2022). Word energy Outlook 2022. Diambil kembali dari https://iea.blob.core.windows.net/assets/a498ef9c-a48c-4c8f-9d38-a5f3dbf63a7e/WEO2022_ES_French.pdf
  19. IEA. (2023). Energy Sankey – Data Tools. Dipetik 1 2, 2024, dari https://www.iea.org/data-and-statistics/data-tools/energy-sankey
  20. IRENA. (2021). Programme de soutien à l'analyse et à la planification du modèle régional. IRENA, International Renewable Energy Agency
  21. IRENA. (2024). The Energy Mix: Democratic Republic of the Congo_Africa_RE_SP.pdf. https://www.irena.org/-/media/Files/IRENA/Agency/Statistics/Statistical_Profiles/Africa/Democratic%20Republic%20of%20the%20Congo_Africa_RE_SP.pdf
  22. Jacquemot, P. (2021). Fleuve Congo : où en est Inga, le projet du plus grand barrage du monde ? (IRIS) Diambil kembali dari https://www.iris-france.org/97305-fleuve-congo-ou-en-est-inga-le-projet-du-plus-grand-barrage-du-monde/
  23. Kibungu, H. B. (2024). Scénario énergétique de la République Démocratique du Congo basé sur la mise en valeur de son potentiel hydroélectrique à l'horizon 2050. Memoire de Master. Kinshasa: Mémoire de Master, Ecole Régionale de l'Eau, Université de Kinshasa
  24. Kumar, M. (2020). An analysis of optimal and near-optimal decarbonisation strategies for Malaysia using a hybrid model, 294. University College London. https://discovery.ucl.ac.uk/id/eprint/10107834/1/200317Thesis_MasterCopyCorrection-2.pdf
  25. Lehtilä, A., & Koljonen, T. (2018). Pathways to Post-fossil Economy in a Well Below 2 ℃ World. Dalam Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy Development (hal. 33–49). https://doi.org/10.1007/978-3-319-74424-7_3
  26. Luwesi, C. (2022). Foresight in agriculture, food and nutrition for planning freshwater in the course of climate change in Africa. Journal of Food Technology & Nutrition Sciences, 4. https://doi.org/10.47363/JFTNS/2022(4)150
  27. Luwesi, C. (2024). Pushing the limits of energy transition in Southern Africa the case of the Grand Inga hydropower project (PPT). Pretoria. A paper presented during the SARW International dialogue on strategic minerals and energy transition
  28. Luwesi, C., & Beyene, A. (2023). Innovative Water Finance in Africa – Economics and Principles of Financial Innovations for Water Managers. Cham: Palgrave MacMillan, Springer Nature Switzerland AG, 209 P. https://doi.org/10.1007/978-3-031-38234-5
  29. Martín-Ortega, J., Chornet, a., Sebos, J. a., Akkermans, I. a., & Sander and López Blanco, M. J. (2024). Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation. Sustainability, 16(10), 4219. https://doi.org/10.3390/su16104219
  30. MEDD. (2021). Plan national d'adaptation aux changements climatiques (2022-2026). Kinshasa: Ministère de l'Environnement et Développement Durable
  31. MEDD. (2022). Premier rapport biennal actualisé de la République Démocratique du Congo à la convention - cadre des Nations Unies sur les changements climatiques. Kinshasa: Ministère de l'Environnement et Developpent Durable
  32. Morriet, L., Wurtz, F., & Debizet, a. G. (2022). Proposal to take into account stakeholders. In motivations in models of optimization decision support tools (p 295–312). Local Energy Communities. https://doi.org/10.4324/9781003257547-20
  33. Moura, G. N., Legey, L. F., & Howells, M. (2018). A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – and the bargaining power of neighbouring countries: A cooperative games approach. Energy Policy, vol. 115, 470–485. https://doi.org/10.1016/j.enpol.2018.01.045
  34. MRHE. (2016). Atlas des energies renouvelables en rdc. https://telegra.ph/Atlas-des-energies-renouvelables-en-rdc-pdf-01-06
  35. MRHE. (2022). Politique nationale de l'énergie de la République Démocratique du Congo. Ministère des Ressources Hydrauliques et Electricité
  36. Namazkhan, M. (2022). Modelling household energy consumption to understand sustainable energy behaviour (Thesis). Groningen: University of Groningen. https://doi.org/10.33612/diss.235155988
  37. Nhamo, G., Nhemachena, C., Nhamo, S., & Vuyo Mjimba, I. S. (2020). Concise Guides to the United Nations Sustainable Development Goals. Dalam SDG7 – Ensure Access to Affordable, Reliable, Sustainable and Modern Energy (Concise Guides to the United Nations Sustainable Development Goals) (Prelims 1–11). Emerald Publishing Limited. https://doi.org/10.1108/978-1-78973-799-820201002
  38. Nydrioti, Sebos, I. a., Kitsara, I. a., Assimacopoulos, G. a., & Dionysios. (2024, Nov). Effective management of urban water resources under various climate scenarios in semiarid mediterranean areas. Scientific Reports, 14. http://doi.org/10.1038/s41598-024-79938-3
  39. OCDE. (2011). Les interactions entre la politique de naturalisation et les autres éléments de la politique nationale d’intégration. Dalam La naturalisation: un passeport pour une meilleure intégration des immigrés . https://doi.org/10.1787/g21f979d2-fr
  40. OECD. (2016). Projected electricity demand from the sub-Saharan African population gaining access to electricity, 2020-40. Dalam OECD, African Economic Outlouk 2016 : Sustainable Cities and Structural Transformation (Vol. 1, hal. P 219-222). OECD. https://doi.org/10.1787/aeo-2016-en
  41. PDGIE. (2018). Project implementation manual for the Development program for energy data-processing management (PDGIE). Kinshasa: Ministry of energy and hydraulic resources
  42. Plazas-Niño, F. A., Ortiz-Pimiento, N. R., & Quirós-Tortós, J. (2023). Supporting Energy System Modelling in Developing Countries: Techno-Economic Energy Dataset for Open Modelling of Decarbonization Pathways in Colombia. ELSEVIER. https://doi.org/10.2139/ssrn.4452432
  43. Progiou, A., Sebos, A. G., Zarogianni, I. a., Tsilibari, A.-M. a., Adamopoulos, E. M., Varelidis, A. D., & Petros. (2022). Impact of covid-19 pandemic on air pollution: the case of athens, Greece. (E. E. (EEMJ), Penyunt.) 21, 879–889
  44. Resource Matters. (2020). Electrification de la RDCongo : à la recherche des pistes de solutions. Resource Matters. Resource Matters et Energy systems Resarch Group Unuversity of Cape Town. https://uploads-ssl.webflow.com/61dedc757232df46a2cf11b3/6430fa1a88264bde3c542ca1_RDC_rapport-v6_compressed.pdf
  45. Ritchie, H., & Roser, M. (2024). The Democratic Republic of Congo: CO2 Country Profile. Our World in Data CO2 and Greenhouse Gas Emissions dataset. https://ourworldindata.org/co2/country/congo
  46. SARW. (2024). Policy Brief: Hydro-energy development for a just energy transition in the Democratic Republic of Congo: A Focus on the Grand Inga Project. Johannesburg: DRC Nationally Determined Contributions – Just Energy Transition Initiative
  47. Schumacher, D. (1985). Energy Options for the Future—Policies and Planning. Dalam Energy: Crisis or Opportunity (hal. pp. 288–310). https://doi.org/10.1007/978-1-349-17797-4_12
  48. SE4ALL-RDC. (2019). A discussion on the status of sustainable energy for all (SE4ALL) in the DRC by the National Commission on Energy. Kinshasa: Ministry of energy and hydraulic resources
  49. Slimani, J., Kadrani, A., El Harraki, I., & Ezzahid, E. H. (2024). Towards a Sustainable Energy Future: Modelling Morocco’s Transition to Renewable Power with Enhanced Osemosys Model. https://doi.org/10.2139/ssrn.4826749
  50. UN. (2019). Données sur le bois-énergie : l’enquête conjointe sur le bois-énergie. Dalam Le bois-énergie dans la région de la CEE (hal. 14–33). United Nations. https://doi.org/10.18356/64dab136-fr
  51. Warner, J., Jomantas, S., Jones, E., Ansari, M. S., & de Vries, L. (2019). The Fantasy of the Grand Inga Hydroelectric Project on the River Congo. Water 2019. https://doi.org/10.3390/w11030407
  52. WBG. (2023, avril 11). La Banque mondiale en République Démocratique du Congo - Vue d'ensemble. World Bank Group. Diambil kembali dari LA BANQUE MONDIALE: https://www.banquemondiale.org/fr/country/drc/overview
  53. Welsch, M., Howells, M., Bazilian, M., DeCarolis, J. F., Rogner, Hermann, S., & H., a. H. (2012). Modelling elements of Smart Grids – Enhancing the OSeMOSYS (Open Source Energy Modelling System) code. Energy, 337-350. https://doi.org/10.1016/j.energy.2012.08.017

Last update:

No citation recorded.

Last update: 2025-07-11 00:09:15

No citation recorded.