skip to main content

Supercapacitive performance and CO2 capture capacities of different porous corn stover-derived activated carbons

Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

Received: 26 Dec 2024; Revised: 16 Jul 2025; Accepted: 6 Aug 2025; Available online: 18 Aug 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This work focuses on synthesizing activated carbon (AC) from corn wastes from the same plantation – husk (ACH), stalk (ACS), and cob (ACCo). A two-stage pyrolysis (600 oC) with KOH chemical activation was employed. Structural and morphological results from Fourier Transform Infrared spectroscopy (FTIR) and Scanning Electron Microscope (SEM) show that the temperature, concentration, and ratio of biochar-to-KOH solution employed are effective as relevant functional groups and porous structures are formed. The best porous texture is possessed by ACH as N2 adsorption isotherms result informs that its surface area, pore volume, and size are 904.76 m2/g, 1.00 cm3/g, and 2.09 nm respectively. At 273 K, ACH displays the highest CO2 adsorption capacity of 4.63 mmolg-1 at 0.95 bar while ACS and ACCo possess CO2 capture capacities of 3.5 and 3.19 mmolg-1 respectively.  Each synthesized AC electrode displays capacitive performance with pseudo capacitance contributions. Dunn and Trasatti analyses show that the capacity of each electrode is more influenced by diffusive contribution. The best porous structure exhibited by ACH is responsible for its superlative electrochemical performance. At current density of 0.5 A/g, its specific capacitance is 430 F/g; this is followed by ACS (257.5 F/g) and the least specific capacitance of 85 F/g is achieved by ACCo. Electrochemical Impedance Spectroscopy (EIS) and Bode plots affirm that with ACH, the fastest diffusion of electrolyte ions into its surface is maintained.

Fulltext View|Download
Keywords: CO2 capture; Corn stover; Lignocellulosic biomass; Microporosity; Supercapacitor

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Ahmed, M.B., Johir, M.A.H., Zhou, J.L., Ngo, H.H., Nghiem, L.D., Richardson, C., Moni, M.A., & Bryant, M.R. (2019). Activated Carbon Preparation from Biomass Feedstock: Clean Production and Carbon Dioxide Adsorption. Journal of Cleaner Production, 225, 405-413; https://doi.org/10.1016/j.jclepro.2019.03.342
  2. Alabadi, A., Razzaque, S., Yang, Y., Chen, S., & Tan, B. (2015). Highly Porous Activated Carbon Materials from Carbonized Biomass with High CO2 Capturing Capacity. Chemical Engineering Journal, 281, 606-612; https://doi.org/10.1016/j.cej.2015.06.032
  3. Alauddin, Z.A.B.Z., Lahijani, P., Mohammadi, M., & Abdul Rahman, M. (2010). Gassification of Lignocellulosic Biomass in Fluidized Beds for Renewable Energy Development: A Review. Renewable and Sustainable Energy Reviews, 14(9), 2852-2862; https://doi.org/10.1016/j.rser.2010.07.026
  4. Awasthi, G.P., Bhattarai, D.P., Maharjan, B., Kim, K.S., Park, C.H., & Kim, C.S. (2019). Synthesis and Characterizations of Activated Carbons from Wisteria Sinensis Seed Biomass for Energy Storage Appications. Journal of Industrial and Engineering Chemistry, 72, 265-272; https://doi.org/10.1016/j.jiec.2018.12.027
  5. Blasi, C.D.(2009). Combustion and Gasification Rates of Lignocellulosic Chars. Progress in Energy and Combustion Science, 35,(2), 121-140; https://doi.org/10.1016/j.pecs.2008.08.001
  6. Chen, F., Juan, Y., Bai, T., Long, B., & Zhou, X. (2016). Facile Synthesis of Few-Layer Graphene from Biomass Waste and its Application in Lithium Ion Batteries. Journal of Electroanalytical Chemistry, 768, 18-26; https://doi.org/10.1016/j.jelechem.2016.02.035
  7. Cao, Y., Wang, K., Wang, X., Gu, Z., Fan, Q., Gibbons, W.R., Hoefelmeyer, J.D., Kharel, P.R., & Shrestha, M. (2016). Hierarchical Porous Activated Carbon for Supercapacitor Derived from Corn Stalk Core by Potassium Hydroxide Activation. Electrochimica Acta, 212, 839-847; https://doi.org/10.1016/j.electacta.2016.07.069
  8. Carmen, B., & Blasi, C.D. (2013). A Unified Mechanism of the Combustion Reactions of Lignocellulosic Fuels. Thermochimica Acta, 565(10), 58-64; https://doi.org/10.1016/j.tca.2013.04.014
  9. Dhineshkumar, S., Rajkumar, S., Sathiyan, A., & Merlin, J.P. (2024). Fabrication of Ag2WO4/PANI Composite with Enhanced Supercapacitor Performance. Journal of Materials Science: Materials in Electronics, 35, 1409, 1-15; https://doi.org/10.1007/s10854-024-13202-2
  10. Fagbayigbo, B.O., Opeolu, B.O., Fatoki, O.S., Akenga, T.A. & Olatunji, O.S. (2017). Removal of PFOA and PFOS from Aqueous Solutions using Activated Carbon Produced from Vitis Vinifera Leaf Litte. Environmental Science Pollution Research, 24, 13107–13120; https://doi.org/10.1007/s11356-017-8912-x
  11. Fonts, I., Martínez, M.A., Carstensen, H.H., Benés, M., Pires, A.P.P., Perez, M.G., & Bilbao, P. (2021). Thermodynamic and Physical Property Estimation of Compounds Derived from the Fast Pyrolysis of Lignocellulosic Materials. Energy and Fuels, 21, 17114–17137; https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c01709
  12. Gan, Y.X. (2021). Activated Carbon from Biomass Sustainable Sources. C Journal of Carbon Research, 7(2), 1-33; https://doi.org/10.3390/c7020039
  13. Garcia, E.H., Riojas, A.A.C., Monje, I.E., López, E.O., Pinedo, O.M.A., Planes, G.A., & Moncada, A.M.B. (2024). Activated Carbon Electrodes for Supercapacitors from Purple Corncob (Zea mays L.). ACS Environmental Au, 4(2), 80-88; https://doi.org/10.1021/acsenvironau.3c00048
  14. Gbenebor, O.P., Olanrewaju, O.A., Usman, M.A. & Adeosun, S.O. (2023). Lignin from Brewersʼ Spent Grain: Structural and Thermal Evaluations. Polymers, 13(10), 1-14; https://doi.org/10.3390/polym15102346
  15. González, D.L., Lopez, M.F., Valverde, J.L. & Silva, L.S. (2014). Gasification of Lignocellulosic Biomass Char Obtained from Pyrolysis: Kinetic and Evolved Gas Analyses. Energy, 71(15), 456-467; https://doi.org/10.1016/j.energy.2014.04.105
  16. Hashemi, B., Sarker, S., Lamb, J.J., & Myklebust, L.K. (2021). Yield Improvements in Anaerobic Digestion of Lignocellulosic Feedstocks. Journal of Cleaner Production, 288, 1-27; https://doi.org/10.1016/j.jclepro.2020.125447
  17. Hao, J., Wang, B., Du, J., Wu, C., Qin, W., & Wu, X. (2024). Interfacial Regulation of Biomass-Derived Carbon Towards High-Performance Supercapacitor. Journal of Energy Storage, 86, 1-10; https://doi.org/10.1016/j.est.2024.111301
  18. Hepsiba P., Rajkumar, S., Elanthamilan, E., Wang, S.F., & Merlin, J.P. (2022). Biomass-Derived Porous Activated Carbon from Anacardium Occidentale Shell as Electrode Material for Supercapacitors. New Journal of Chemistry, 46, 8863 – 8873; https://doi.org/10.1039/D2NJ01041K
  19. Igathinathane, C., Womac, A.R., & Sokhansanj, S. (2010). Corn Stalk Orientation Effect on Mechanical Cutting. Biosystems Engineering, 107, 97 -106; https://doi.org/10.1016/j.biosystemseng.2010.07.005
  20. Igathinathane, C., Womac, A.R., Sokhansanj, S., & Pordesimo, L.O. (2006), Mass and Moisture Distribution in Aboveground Components of Standing Corn Plants. Transactions of the ASABE, 49(1), 97-106; https://doi.org/10.13031/2013.20217) @2006
  21. Jalalah, M., Han, H., Mahadani, M., Nayak, A.K., & Harraz, F.A. (2023). Novel Interconnected Hierarchical Porous Carbon Derived from Biomass for Enhanced Supercapacitor Application. Journal of Electroanalytical Chemistry, 935, 1-9; https://doi.org/10.1016/j.jelechem.2023.117355
  22. Jeloo, Z.A.G., Ghasemzadeh, S., Hosseini-Monfared, H., Javanbakht, M., Naji, L., Najaflo, M., & Hamidi, S. (2024). From Barley Straw Biomass to N/S Co-Doped as Electrode Material for High-Performance Supercapacitor Applications, Materials Chemistry and Physics, 323, 1-14; https://doi.org/10.1016/j.matchemphys.2024.129653
  23. Kamperidou, V., & Terzopoulou, P. (2021). Anaerobic Digestion of Lignocellulosic Waste Materials. Sustainability, 13(22), 1-23; https://doi.org/10.3390/su132212810
  24. Karnan, M., Subramani, K., Srividhya, P.K., & Sathish, M. (2017). Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes. Electrochimica Acta, 228, 586-596; https://doi.org/10.1016/j.electacta.2017.01.095
  25. Krishnamoorthy, K., Veerasubramani, K.G., Radhakrishnan, S., & Kim, S.J. (2014). Supercapacitive Properties of Hydrothermally Synthesized Sphere like MoS2 Nanostructures. Materials Research Bulletin, 50, 499-502: https://doi.org/10.1016/j.materresbull.2013.11.019
  26. Kwapinski, W., Byrne, C.M.P., Kryachko, E., Wolfram, P., Adley, C., Novotny, E.H., & Hayes, M.H.B. (2010). Biochar from Biomass and Waste. Waste and Biomass Valorization, 1, 177–189; https://doi.org/10.1007/s12649-010-9024-8
  27. Li, Y., Li, C., Qi, H., Yu, K., & Liang, C. (2018). Mesoporous Activated Carbon from Corn Stalk Core for Lithium Ion Batteries. Chemical Physics, 506, 10–16; https://doi.org/10.1016/j.chemphys.2018.03.027
  28. Luo, Z., Cal, P.L.D., Chen, Q., Qin, P., Tan, T., & Cao, H. (2017).Comparison of Performances of Corn Fiber Plastic Composites Made from Different Parts of Corn Stalk. Industrial Crops and Products, 95, 521-527; https://doi.org/10.1016/j.indcrop.2016.11.005
  29. Mehdi, R., Naqvi, S.R., Khoja, A.F., & Hussain R. (2023). Biomass Derived Activated Carbon by Chemical Surface Modification as a Source of Clean Energy for Supercapacitor Application. Fuel, 348, 1-10; https://doi.org/10.1016/j.fuel.2023.128529
  30. Mopoung, S., & Dejang, N. (2021). Activated Carbon Preparation from Eucalyptus Wood Chips using Continuous Carbonization–Steam Activation Process in a Batch Intermittent Rotary Kiln. Scientific Reports, 11(13948), 1-9; https://doi.org/10.1038/s41598-021-93249-x
  31. Mumtaz, H., Farhan, M., Amjad, M., Riaz, F., Kazim, A.H., Sultan, M., Farooq, M., Mujtaba, M.A., Hussain, I., Imran, M., Anwar, S., El-Sherbeeny, A.M., Siddique, F.A., Armaković, S., Ali, Q., Chaudhry, I.A., & Pettinau, A. (2021). Biomass Waste Utilization for Adsorbent Preparation in CO2 Capture and Sustainable Environment Applications. Sustainable Energy Technologies and Assessments, 46, 1-8; https://doi.org/10.1016/j.seta.2021.101288
  32. Oliva, A., Tan, L.C., Papirio, S., Esposito, G., & Lens, P.N.L. (2021). Effect of Methanol-organosolv Pretreatment on Anaerobic Digestion of Lignocellulosic Materials. Renewable Energy, 169, 1000-1012; https://doi.org/10.1016/j.renene.2020.12.095
  33. Olivares, R.D.O., Peralta, D.R.L., Arias, D.M., Okolie, J.A., Gallegos, A.K.C., Sebastian, P.J., Mayer, A.R., & Okoye, P.U. (2022). Production of Nanoarchitectonics Corncob Activated Carbon as Electrode Material for Enhanced Supercapacitor Performance. Journal of Energy Storage, 55, 1-12; https://doi.org/10.1016/j.est.2022.105447
  34. Omoriyekomwan, J.E., Tahmasebi, A., Dou, J.J., Wang, R., & Yu, J. (2021). A Review on the Recent Advances in the Production of Carbon Nanotubes and Carbon Nanofibers via Microwave-Assisted Pyrolysis of Biomass. Fuel Processing Technology, 214, 1-22; https://doi.org/10.1016/j.fuproc.2020.106686
  35. Peralta, D.R.L., Brito, E.D., Orugba, H.O., Arias, D.M., Gallegos, A.K.C., Okolie, J.A., & Okoye, P.U. (2023). Sponge-like Nanoporous Activated Carbon from Corn Husk as a Sustainable and Highly Stable Supercapacitor Electrode for Energy Storage. Diamond and Related Materials, 138, 1-13; https://doi.org/10.1016/j.diamond.2023.110176
  36. Pu, Q., Zou, J., Wang, J., Lu, S., Ning, P., Huang, L., & Wang, Q. (2021). Systematic Study of Dynamic CO2 Adsorption on Activated Carbons Derived from Different Biomass. Journal of Alloys and Compounds, 887, 1-14; https://doi.org/10.1016/j.jallcom.2021.161406
  37. Rajkumar, S., Gowri, S., Karthikeyan, M., Dhineshkumar, S., Ansar, S., Priyadharshan, M., & Merlin, J.P. (2024). One-step Synthesis of Nanostructured Ag2Mo2O7 with Enhanced Efficiency for Supercapacitors. Ionics, 1-13; https://doi.org/10.1007/s11581-024-05755-3
  38. Rajkumar, S., Karthikeyan, M., Manohar, A., Dhineshkumar, S., & Merlin, J.P. (2024). One-Step Synthesis and Fabrication of ZrMo2O8 Nanostructures as Advanced Electrode Material for Energy Storage Applications. Journal of Industrial and Engineering Chemistry, 137, 162-173; https://doi.org/10.1016/j.jiec.2024.03.002
  39. Rahmati, S., Doherty, W., Dubal, D., Atanda, L., Moghaddam, L., Sonar, P., Hessel, V., & Ostrikov, K. (2020). Pretreatment and Fermentation of Lignocellulosic Biomass: Reaction Mechanisms and Process Engineering. Reaction Chemistry & Engineering, 5, 2017-2047; https://doi.org/10.1039/D0RE00241K
  40. Rani, M.U., Nanaji, K., Rao, T.N., & Deshpande, A.S. (2020). Corn Husk Derived Activated Carbon with Enhanced Electrochemical Performance for High-Voltage Supercapacitors. Journal of Power Sources, 471, 1-10; https://doi.org/10.1016/j.jpowsour.2020.228387
  41. Reddy, N., & Yang, Y., (2015). Natural Cellulose Fibers from Corn Stover. Innovative Biofibers from Renewable Resources. Springer Berlin Heidelberg, 5–8; https://doi.org/10.1007/97
  42. Reddygunta, KKR., Beresford, R., Šiller, L., Berlouis, L. & Ivaturi, A. (2023). Activated Carbon Utilization from Corn Derivatives for High-Energy-Density Flexible Supercapacitors. Energy Fuels, 37,19248−19265; https://doi.org/10.1021/acs.energyfuels.3c01925
  43. Roh, C, Jeon, H, Kim, S, Kim, J, Song S, Lee, L, & Kang, S. (2025). A Study on Equivalent Series Resistance Estimation Compensation for DC-Link Capacitor Life Diagnosis of Propulsion Drive in Electric Propulsion Ship. Processes, 13(2), 1-18; https://doi.org/10.3390/pr13020291
  44. Senneca, O., & Cerciello, F. (2023). Kinetics of Combustion of Lignocellulosic Biomass: Recent Research and critical issues, Fuel, 347, 1-16: https://doi.org/10.1016/j.fuel.2023.128310
  45. Serafin, J., Baca, M., Biegun, M., Mijowska, E., Kaleńczuk, R.J., Nazzal, J.S., & Michalkiewicz, B. (2019). Direct Conversion of Biomass to Nanoporous Activated Biocarbons for High CO2 Adsorption and Supercapacitor Applications. Applied Surface Science, 497, 1-19; https://doi.org/10.1016/j.apsusc.2019.143722
  46. Serafin, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J., & Michalkiewicz, B. (2017). Highly Microporous Activated Carbons from Biomass for CO2 Capture and Effective Micropores at Different Conditions. Journal of CO2 Utilization, 18, 73-79; https://doi.org/10.1016/j.jcou.2017.01.006
  47. Singh, G., Kim, I.Y., Lakhi, K.S., Srivastava, P., Naidu, R., & Vinu, A. (2017). Single Step Synthesis of Activated Bio-Carbons with A High Surface Area and their Excellent CO2 Adsorption Capacity. Carbon, 116, 448-455; https://doi.org/10.1016/j.carbon.2017.02.015
  48. Srinivasan, R., Elaiyappillai, E., Pandian, H.P., Vengudusamy, R., Johnson, P.M., Chen, S.M., & Karvembu, R. (2019). Sustainable Porous Activated Carbon from Polyalthia Longifolia Seeds as Electrode Material for Supercapacitor Application. Journal of Electroanalytical Chemistry, 849, 1-12; https://doi.org/10.1016/j.jelechem.2019.113382
  49. Surya, K., & Michael, M.S. (2020). Novel Interconnected Hierarchical Porous Carbon Electrodes Derived ffom Bio-waste of Corn Husk for Supercapacitor Applications. Journal of Electroanalytical Chemistry, 878, 1-10; https://doi.org/10.1016/j.jelechem.2020.114674
  50. Thirumal, V., Yuvakkumar, R., Ravi, G., Dineshkumar, G., Ganesan, M., Alotaibi, S.H., & Velauthapillai, D. (2022). Characterization of Activated Biomass Carbon from Tea Leaf for Supercapacitor Applications. Chemosphere, 291, 1-8; https://doi.org/10.1016/j.chemosphere.2021.132931
  51. Tounsadi, H., Khalidi, A., Abdennouri, M., & Barka, N. (2016). Activated Carbon from Diplotaxis Haria Biomass: Optimization from Preparation Conditions and Heavy Metal Removal. Journal of the Taiwan Institue of Chemical Engineers, 59, 348-358; https://doi.org/10.1016/j.jtice.2015.08.014
  52. Vinayagam, M., Babu, R.S., Sivasamy, A., & Ferreira de Barros, L.A. (2020). Biomass-Derived Porous Activated Carbon from Syzygium Cumini Fruit Shells and Dhrysopogon Zizanioides Roots for High-Energy Density Symmetric Supercapacitors. Biomass and Bioenergy, 143, 1-8; https://doi.org/10.1016/j.biombioe.2020.105838
  53. Vinayagam, M., Babu, R.S., Sivasamy1, A., & Ferreira de Barro, A.L. (2021). Biomass Derived Porous Activated Carbon Nanofbers from Sapindus Trifoliatus Nut Shells for High Performance Symmetric Supercapacitor Applications. Carbon Letters, 31, 1133-1143; https://doi.org/10.1007/s42823-021-00235-4
  54. Vinayagam, M., Babu, R.S., Sivasamy1, A., & Ferreira de Barro, A.L. (2024). Physical Activation Assisted Porous Activated Carbon from Strychnos Potatorum Shells for High-Performance Symmetric Supercapacitors. Materials Letters, 371, 1-4; https://doi.org/10.1016/j.matlet.2024.136961
  55. Wu, L., Cai, Y., Wang, S., & Li, Z. (2021). Doping of Nitrogen into Biomass-Derived Porous Carbon with Large Surface Area using N2 Non-Thermal Plasma Technique for High-Performance Supercapacitor. International Journal of Hydrogen Energy, 46(2), 2432-2444: https://doi.org/10.1016/j.ijhydene.2020.10.037
  56. Xiang, J., Zheng, H., Xue, H., Huang, W., Yuan, P., Yang, T., Yang, L., Wang, Q., & Zhang, Y. (2024). Performance Study of High Energy Storage Supercapacitor from Waste Corn Husk Biomass Electrode Materials. Journal of Physics and Chemistry of Solids, 194, 1-12; https://doi.org/10.1016/j.jpcs.2024.112265
  57. Yu, K., Zhu, H., Qi, H., & Liang, C. (2018). High Surface Area Carbon Materials Derived from Corn Stalk Core as Electrode for Supercapacitor. Diamond and Related Materials, 88, 18-22; https://doi.org/10.1016/j.diamond.2018.06.018
  58. Yu, S., Wang, L., Li, Q., Zhang, Y., & Zhou, Z. (2022). Sustainable Carbon Materials from the Pyrolysis of Lignocellulosic Biomass. Materials Today Sustainability, 19, 1-12; https://doi.org/10.1016/j.mtsust.2022.100209
  59. Zeng, K., He, X., Yang, H., Wang, X., & Chen, H. (2019). The Effect of Combined Pretreatments on the Pyrolysis of Corn Stalk. Bioresource Technology, 281, 309-317; https://doi.org/10.1016/j.biortech.2019.02.107
  60. Zhao, J., Yu, L., Ma, H., Zhou, F., Yang, K., & Wu, G. (2020). Corn Stalk-Based Activated Carbon Synthesized by a Novel Activation Method for High-Performance Adsorption of Hexavalent Chromium in Aqueous Solutions. Journal of Colloid and Interface Science, 578,650–659; https://doi.org/10.1016/j.jcis.2020.06.031

Last update:

No citation recorded.

Last update: 2025-10-21 06:01:50

No citation recorded.