skip to main content

Enhancement of aerodynamic performance of H-Darrieus rotor using wraparound fairing system: A 2D CFD study

1Physics Department, Thermodynamics and Energy Research Team, Energy Research Centre, Faculty of Science, Mohammed V University, 4 Avenue Ibn Batouta, Address, BP 1014, Rabat 10000, Morocco

2Physics Department, Team of Modeling and Simulation in Mechanics and Energetics (MSME), Faculty of Science, Mohammed V University, 4 Avenue Ibn Batouta Address, BP 1014, Rabat 10000, Morocco

Received: 3 Jun 2025; Revised: 29 Jul 2025; Accepted: 15 Aug 2025; Available online: 25 Aug 2025; Published: 1 Sep 2025.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2025 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The aim of this article is to improve the aerodynamic performance of a three-bladed vertical axis H-Darrieus wind turbine, which is equipped with different types of fairings. To this end, a 2D CFD simulation combined with calculations based on the resolution of the Steady Reynolds-Averaged Navier-Stokes equations (RANS) and the SST  turbulence model was used. In addition, the multiple reference frame (MRF) method was applied for the simulation. The simulation results show that the power coefficient () reaches maximum values equal to 0.561, 0.580 and 0.607 for the NACA2412, Eppler 423 and DAE-11 profiles respectively, for a chord length C = 3 and a tip speed ratio (TSR) equal to 2.5. Then, the torque coefficient () reaches the highest value of  = 0.354 at  = 20° for the DAE-11 fairing, which means that this profile performs better, particularly at higher angles of attack. These results confirm that the DAE-11 fairing surpassed the Eppler 423 and NACA2412 profiles. Unstable vortex field formation has been observed between the turbine and the fairing, at the leading and trailing edges, for both low and high fairing chord lengths. This phenomenon can increase torque and disrupt flow direction at low velocity. On the other hand, when the chord length reaches a medium value, a more stable flow zone appears. It can therefore be concluded that the addition of a fairing to the H-Darrieus rotor with a suitable chord length improves the turbine aerodynamic performance, particularly in terms of flow stabilization and reduction of the stagnation zone.

Fulltext View|Download
Keywords: CFD; H-Darrieus; MRF; Power coefficient; Torque coefficient; Fairing; Performance assessment; NACA0018

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Ahmad, M., Shahzad, A., Akram, F., Ahmad, F., Shah, S.I.A. (2022). Design optimization of Double-Darrieus hybrid vertical axis wind turbine, Ocean Eng., 254, 111171; https://doi.org/10.1016/j.oceaneng.2022.111171
  2. ANSYS Inc, (2014). Introduction to Ansys Fluent-Turbulence Modeling.; https://doi.org/10.1016/j.prime.2023.100178
  3. Asr, M.T., Nezhad, E.Z., Mustapha, F., Wiriadidjaja, S. (2016). Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils, Energy, 112, 528e37; https://doi.org/10.1016/j.energy.2016.06.059
  4. Balduzzi, F. Bianchini, A. Maleci, R. Ferrara, G. Ferrari, L. (2016). Critical issues in the CFD simulation of Darrieus wind turbines, Renew Energy January, 85: 419e35; http://dx.doi.org/10.1016/j.renene.2015.06.048
  5. Bausas, M.D., Danao, L.A.M. (2015). The aerodynamics of a camberbladed vertical axis wind turbine in unsteady wind, Energy, 93, 1155e64; https://doi.org/10.1016/j.energy.2015.09.120
  6. Castelli, R., Englaro, A., Benini, E.(2011) The Darrieus wind turbine: proposal for a new performance prediction model based on CFD, Energy, 36, 4919–4934; https://doi.org/10.1016/j.energy.2011.05.036
  7. Celik, Y., Ma, L., Ingham, D., Pourkashanian, M. (2020). Aerodynamic investigation of the start-up process of H-type vertical axis wind turbines using CFD, J. Wind. Eng. Ind. Aerodyn, 204, 104252. https://doi.org/10.1016/j.jweia.2020.104252
  8. Chandra, S., Tyagi, R. (2020). Study of Eppler 423 Airfoil with Gurney
  9. Chowdhury, N.E., Shakib, M.A., Xu, F., Salehin, S., Islam, M.R., Bhuiyan,A.A (2022). Adverse environmental impacts of wind farm installations and alternative research pathways to their mitigation, Clean Eng Technol, 7, 100415; https://doi.org/10.1016/j.clet.2022.100415
  10. Chunyan, Z., Shuaishuai, W., Yinhu, Q., Zhiqiang, Z. (2023). Optimized Design of H-Type Vertical Axis Wind Airfoil at Multiple Angles of Attack, Fluid Dynamics & Materials Processing, 19, 10; https://doi.org/10.32604/fdmp.2023.028059
  11. Douha, B., Saïf ed-Dîn, F., Maryam, B., Abderrahim, S. (2025). CFDNumerical Simulation Study of Aerodynamic Performance of H Darrieus Rotor, CFD Letters, 17, 6, 117; https://doi.org/10.37934/cfdl.17.6.117
  12. Flap and Vortex Generators, Advances in Aerospace Science and Technology, 05, 51001; https://doi.org/10.4236/aast.2020.51001
  13. Fluent, A. (2020). Ansys fluent theory guide. ANSYS Inc., USA, pp. 00011026. URL https://www.ansys.com/
  14. Fluent, A. N. S. Y. S. (2011). Ansys fluent theory guide. Ansys Inc., USA, 15317, 724-746; URL https://www.ansys.com/
  15. Gebreel, A.,William, M., Fue-Sang, L. (2017). Pitch angle control for a small-scale Darrieus vertical axis wind turbine with straight blades (H-Type VAWT), Renewable Energy, 114, 1353e1362; https://doi.org/10.1016/j.renene.2017.07.068
  16. Gemayel, D., Abdelwahab, M., Ghazal, T., Aboshosha, H. (2023). Modelling of vertical axis wind turbine using large eddy simulations, Results in Engineering, 18, 101226; https://doi.org/10.1016/j.rineng.2023.101226
  17. Hau E. (2006) Wind turbines: fundamentals, technologies, application, economics. Publisher: Berlin, Springer-Verlag
  18. Hoseinzadeh, S., Amin, B., Seyed, M.M., Ali, S., Stephan, H. (2020). A detailed experimental airfoil performance investigation using an equipped wind tunnel, Flow Measurement and Instrumentation, 72, 101717; https://doi.org/10.1016/j.flowmeasinst.2020.101717
  19. Ian Carlo, M.L, Louis, A.M.D. (2019) Steady wind performance of a 5 kW three bladed H-rotor Darrieus Vertical Axis Wind Turbine (VAWT) with cambered tubercle leading edge (TLE) blades, Energy, 175, 278-291; https://doi.org/10.1016/j.energy.2019.03.033
  20. Inc, A. ANSYS fluent (2020) R1, user’s guide, 11.6.5. Six DOF solver settings, 11.6.5.1. Setting rigid body motion attributes for the six DOF solver. 2020; URL https://www.ansys.com/
  21. Kanyako, F., Janajreh, I. (2015). Vertical axis wind turbine performance prediction models using high and low fidelity analyses, Int J Eng Res Innovation, 7, 48e56; https://doi.org/10.1109/InnoTek.2014.6877366
  22. Kevin, R., Moore, B.L.E. (2020). Vertical-Axis Wind Turbine Steady and Unsteady Aerodynamics for Curved Deforming Blades, SAND, 87185; https://doi.org/10.15632/jtam-pl.56.1.203
  23. Krzysztof, R., Martin, O.L.H., Galih, B. (2020). Performance Analysis of a H-Darrieus Wind Turbine for a Series of 4-Digit NACA Airfoils, Energies, 13, 3196; https://doi.org/10.3390/en13123196
  24. Maalouly, M., Souaiby, M., ElCheikh, A., Issa, j.s, Elkhoury, M. (2022). Transient analysis of H- type Vertical Axis Wind Turbines using CFD, Energy Reports, 8, 4570–4588; https://doi.org/10.1016/j.egyr.2022.03.136
  25. Mahdi, T.A., Erfan, Z.N., Faizal, M., Surjatin, W. (2016). Study on start- up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils, Energy, 112, 528e537; https://doi.org/10.1016/j.energy.2016.06.059
  26. Maître, T., Amet, E., Pellone, C., Modeling of the flow in a Darrieus water turbine: Wall grid refinement analysis and comparison with experiments. Renewable Energy, 51, 497-512; https://doi.org/10.1016/j.renene.2012.09.030
  27. Mandar, T., Salman, M.S., Adil, R., Trond, K. (2017). Scale turbine and associated wake development -comparison of RANS based Actuator Line Vs Sliding Mesh Interface Vs Multiple Reference Frame method, Energy Procedia, 137, 477–48;
  28. Marini, M., Aristide, M., Antonio, S. (1992). Performance of vertical axis wind turbines with different shapes, Journal of wind engineering and industrial aerodynamics, 39, 1-3 83-93; https://doi.org/10.1016/0167-6105(92)90535-I
  29. Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models For engineering applications. AIAA J, 32, 8 1598–605; https://doi.org/doi.org/10.2514/3.12149
  30. Milad, Y.R., Khaleghini, j., Majid, E.N. Hesamoddin, S. (2021). Performance improvement of Darrieus wind turbine using different cavity layout, Energy Conversion and Management, 246, 114693; https://doi.org/10.1016/j.enconman.2021.114693
  31. Mohammed, S., Shaaban, A. (2017). à Efficient clusters and patterned farms for Darrieus wind turbines, Sustainable Energy Technologies and Assessments, 19, 125-135; https://doi.org/10.1016/j.seta.2017.01.007
  32. NEA Releases National Power Industry Statistics (2022). Available online: https://www.nea.gov.cn/2023-01/18/c_1310691509.htm (accessed on 12 October 2024)
  33. Palanisamy, M.K,Mohan, R.S., Krishnamoorthi, S., Teik, C.L., Seeram, R., He, W. (2019). Computational Optimization of Adaptive Hybrid Darrieus Turbine: Part 1, Fluids, 4(2), 90; https://doi.org/10.3390/fluids4020090
  34. Paulo, A.S.F., Silva, P., Tsoutsanis, A., Antoniadis, F. (2021). Simple multiple reference frame for high-order solution of hovering rotors with and without ground effect, Aerospace Science and Technology, 111, 10651; https://doi.org/10.1016/j.ast.2021.106518
  35. Pedram, G., Gholamhassan, N., Barat, G., Ali. J., Rizalman, M., Mohd, F.G. (2023). CFD-Study of the H-Rotor Darrius wind turbine performance in Drag-Lift and lift Regime: Impact of Type, thickness and chord length of blades, Alexandria Engineering Journal, 67, 51-64; https://doi.org/10.1016/j.aej.2022.10.013
  36. Peter, G., Raja, S., Axial, Fan. (2011). Performance Predictions in CFD, Comparison of MRF and Sliding Mesh with Experiments, SAE Technical Paper, 01, 0652; https://doi.org/10.4271/2011-01-0652
  37. Qamar, S.B., Janajreh, I. (2017). Investigation of effect of cambered blades on Darrieus VAWTs, Energy Procedia, 105, 537e43; https://doi.org/10.1016/j.egypro.2017.03.353
  38. Qasemi, K., Azadani, L.N. (2020). Optimization of the power output of a vertical axis wind turbine augmented with a flat plate deflector, Energy, 202, 117745; https://doi.org/10.1016/j.energy.2020.117745
  39. Ramesh, M., Vijayanandh, R., Acoustic Investigation on Unmanned Aerial Vehicle’s Rotor Using CFD-MRF Approach, Gas Turbine India, 2019, 7, 2430; https://doi.org/10.1115/GTINDIA2019-2430
  40. Rogowski, K., Hansen, M.O.L., Maronski, R. (2018). Steady and Unsteady Analysis of NACA0018 Airfoil in Vertical-Axis Wind Turbine. Journal of Theoretical and Applied Mechanics, 56, 203-212;
  41. Rohini, J.B., Hussein, A.Z., AL-bonsrulah, V.R., Lokeshkumar, K., Sri Diviyalakshmi, K., Senthil, K.M., Raffik, R., Parvathy, R., Mohammed, A.l.B. (2022). Design and multiperspectivity-based performance investigations of H-Darrieus vertical axis wind turbine through computational fluid dynamics adopted with moving reference frame approaches, International Journal of Low-Carbon Technologies, 17, 784–806; https://doi.org/10.1051/epjconf/20159202058
  42. Rosario, L., Stefano, M., Michele, M., Sebastian, B. (2020). Development and Validation of CFD 2D Models for the Simulation of Micro H-Darrieus Turbines Subjected to High Boundary Layer Instabilities, Energies, 13, 5564; https://doi.org/10.3390/en13215564
  43. Saïf ed-Dîn, F., Samaouali, A., Kadiri, I. (2023). CFD comparison of 2D And 3D aerodynamics in H-Darrieus prototype wake, E-Prime Advances in Electrical Engineering, Electronics and Energy, 4, 100178;
  44. Saïf ed-Dîn, F., Tarik, B., Anass, K., Abderrahim, S., Imad, K. (2023).Assessment of fairing geometry effects on H-Darrieus hydro turbine performance using 2D URANS CFD simulations. Energy Conversion and Management, 293, 117434; https://doi.org/10.1016/j.enconman.2023.117434
  45. Sedaghat, A., Hassanzadeh, A., Jamali, J., Mostafaeipour, A., Chen, W.H. (2017). Determination of rated wind speed for maximum annual energy production of variable speed wind turbines. Appl. Energy, 205, 781–789; https://doi.org/10.1016/j.apenergy.2017.08.079
  46. SWei, H.C., Trinh, T.L., Min, H.C., Liwen, J., Chih, C.C.h., Gerardo, L.A. (2024). Optimizing H-Darrieus Wind Turbine Performance with Double-Deflector Design, Energies, 17, 503; https://doi.org/10.3390/en17020503
  47. Vennell, R. (2013). Exceeding the betz limit with tidal turbines, Renew Energy, 55, 277–85; https://doi.org/10.1016/j.renene.2012.12.016
  48. Versteeg, H.K., Malalasekera, W. (2007). An introduction to computational fluid dynamics: The finite volume method, Pearson education; URL https://www.pearsoned.co.uk/versteeg
  49. Wang, S., Ingham, D.B., Lin, M.a., Pourkashanian, M., Tao, Z. (2012). Turbulence modeling of deep dynamic stall at relatively low Reynolds number, J Fluids Struct, 33, 191e209; https://doi.org/10.1016/j.jfluidstructs.2012.04.011
  50. Willmott, C.J., Ackleson, S.G., Davis, R.E., Feddema, J.J., Klink, K.M., Legates, D.R., O’donnell, J., Rowe, C.M. (1985). Statistics for the evaluation and comparison of models, Oceans, 90, C5 8995-9005; https://doi.org/10.1029/JC090iC05p08995
  51. Ying, W., Sheng, S., Gaohui, L.i., Diangui, H., Zhongquan, Z. (2018). Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes, Renewable Energy, 126, 801-818; https://doi.org/10.1016/j.renene.2018.02.095
  52. Zhandos, B., Taeseong, K., Chankyu, S. (2021). Numerical method to predict ice accretion shapes and performance penalties for rotating vertical axis wind turbines under icing conditions, Journal of Wind Engineering and Industrial Aerodynamics, 216, 104708; https://doi.org/10.1016/j.jweia.2021.104708
  53. Zhao, Z., Wang, D., Wang, T., Shen, W., Liu, H., Chen, M., A review: Approaches for aerodynamic performance improvement of lift-type vertical axis wind turbine, Sustain. Energy Technol. Assess., 49, 101789;

Last update:

No citation recorded.

Last update: 2025-09-11 01:07:36

No citation recorded.